
Notes 19 : Martingale CLT

Math 733-734: Theory of Probability Lecturer: Sebastien Roch

References: [Bil95, Chapter 35], [Roc, Chapter 3].
Since we have not encountered weak convergence in some time, we first recall

a number of definitions and results that will be useful to keep in mind throughout
this lecture.

DEF 19.1 (Distribution function) Let X be a RV on a triple (Ω,F ,P). The law
of X is

LX = P ◦X−1,

which is a probability measure on (R,B). By the Uniqueness of Extension lemma,
LX is determined by the distribution function (DF) of X

FX(x) = P[X ≤ x], x ∈ R.

DEF 19.2 (Convergence in distribution) A sequence of DFs (Fn)n converges in
distribution (or weakly) to a DF F if

Fn(x)→ F (x),

for all points of continuity x of F . If Fn and F are the DFs of Xn and X respec-
tively, we write Xn ⇒ X .

THM 19.3 (Convergence in distribution v. in probability) Suppose that (Xn)n
is a sequence of RVs with Xn ∼ Fn. The following holds:

1. If Xn →P X∞, then Xn ⇒ X∞.

2. If Xn ⇒ c, where c is a constant, then Xn →P c.

LEM 19.4 (Converging together lemma) If Xn ⇒ X and Zn − Xn ⇒ 0, then
Zn ⇒ X .

LEM 19.5 (Multiplying by a converging sequence) If Xn ⇒ X and Yn ⇒ c
with Yn ≥ 0 and c > 0, then XnYn ⇒ cX .
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DEF 19.6 (Characteristic function) The characteristic function (CF) of a RV X
is

φX(t) = E[eitX ] = E[cos(tX)] + iE[sin(tX)],

where the second equality is a definition and the expectations exist because they
are bounded.

EX 19.7 (Gaussian distribution) Let X ∼ N(0, 1). Then

φX(t) = e−t
2/2.

THM 19.8 If X1 and X2 are independent then

φX1+X2(t) = φX1(t)φX2(t).

LEM 19.9 If DFs F and G have the same CF, then they are equal.

THM 19.10 (Lévy’s Continuity Theorem) Let µn, 1 ≤ n ≤ ∞ be probability
measures (PM) with CFs φn.

1. If µn ⇒ µ∞ then φn(t)→ φ∞(t) for all t.

2. If φn(t) converges pointwise to a limit φ(t) that is continuous at 0 then the
associated sequence of PMs µn converges weakly to a PM µ with CF φ.

THM 19.11 (CLT) Let (Xn)n be IID with E[X1] = µ and Var[X1] = σ2 <
+∞.Then if Sn =

∑n
k=1Xk

Sn − nµ
σ
√
n
⇒ N(0, 1).

1 Martingale CLT

We have seen that MGs are, in some ways, generalizations of unbiased RWs.
Hence, one might expect a CLT to hold under appropriate conditions (namely,
Lindeberg-type conditions). That turns out to be the case, but the situation is more
complex than for sums of independent RVs, as the next example suggests. In brief,
mixtures of unbiased RWs are also MGs, in which case the limit may be a mixture
of Gaussians.
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EX 19.12 (Mixtures of RWs) Recall that, if the bounded process {Cn}n≥1 is pre-
dictable (i.e. Cn ∈ Fn−1 for all n ≥ 1) and {Sn}n≥0 is a MG, then the martingale
transform {(C • S)n}n≥0 with

Mn = (C • S)n ≡
∑
i≤n

Ci(Si − Si−1),

is also a MG. Suppose Sn is SRW on the integers started at 0, that is, Sn =∑n
i=1Xi where the Xis are IID uniform in {−1,+1}. Hence Si − Si−1 = Xi.

Let also X0 be independent uniform in {1, 2} and set Ci = X0 for all i ≥ 1.
Then, with respect to the filtration Fn = σ(X0, . . . , n) for n ≥ 0, {Sn}n≥0 is
a MG (because E[Xi] = 0) and {Cn}n≥1 is bounded and predictable. Hence
{Mn}, as defined above, is a MG. Now note that {Mn} is a mixture of two RWs,
in the following sense. On {X0 = 1}, which occurs with probability 1/2, we have
Mn =

∑n
i=1Xi and THM 19.11 implies that Mn/

√
n ⇒ N(0, 1). On the other

hand, on {X0 = 2}, which also occurs with probability 1/2, we have instead
Mn =

∑n
i=1 2Xi and THM 19.11 implies this time that Mn/

√
4n ⇒ N(0, 1)—or

Mn/
√
n⇒ N(0, 4).

To handle this issue, we introduce the conditional variance. Let {Mn} be a MG
in L2 with corresponding MG difference Zn = Mn −Mn−1 and let

σ2
n = E[Z2

n | Fn−1].

(Note that this is a RV.) Consider the stopping time (ST)

τn = inf

{
m ≥ 0 :

m∑
i=1

σ2
i ≥ n

}
. (1)

This is indeed an ST since {τn ≤ m} = {
∑m

i=1 σ
2
i ≥ n} ∈ Fm−1 ⊆ Fm. Under

the assumption that
∑

n σ
2
n = +∞ with probability 1, we then have τn ↑ +∞

a.s. when n→ +∞.

THM 19.13 (A CLT for MGs with Bounded Increments) Let {Mn} be a MG
with corresponding MG difference Zn = Mn −Mn−1. Assume there is a constant
K < +∞ such that |Zn| ≤ K with probability 1 for all n. Let σ2

n = E[Z2
n | Fn−1]

and assume that
∑

n σ
2
n = +∞ with probability 1. Let τn be as defined in (1).

Then
Mτn√
n
⇒ N(0, 1),

as n→ +∞.
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Going back to the example above:

EX 19.14 (Mixtures of RWs continued) The conditions of THM 19.13 are satis-
fied withK = 4 by noting that σ2

n ≥ 1 a.s. for all n. On {X0 = 1} we have τn = n
for all n, while on {X0 = 2} we have τn = n/4 for all n.

To prove THM 19.13, we establish a generalization of the Lindeberg-Feller
CLT. The setting involves a sequence of MGs {Mn,m}m≥0 for n ≥ 1 with respect
to filtrations {Fn,m}m≥0. (If the original MG is only defined for 0 ≤ m ≤ rn, then
one can extend it by letting Mn,m = Mn,rn and Fn,m = Fn,rn for all m > rn.
More generally, this setting accommodates a MG stopped at a sequence of stopping
times diverging to infinity. See proof of THM 19.13 below.)

THM 19.15 (Martingale CLT) For each n, let {Mn,m}m≥0 be a MG in L2 with
respect to filtration {Fn,m}m≥0 with corresponding MG differenceZn,m = Mn,m−
Mn,m−1 and conditional variance σ2

n,m = E[Z2
n,m | Fn,m−1]. Assume that, for

each n, Mn,m and Γn,m ≡
∑m

r=1 σ
2
n,r converge a.s. to a finite limit when m →

+∞. Suppose that

1. Γn,∞ ≡
∑+∞

m=1 σ
2
n,m → 1 in probability as n→ +∞

2. ∀ε > 0, limn
∑+∞

m=1 E[Z2
n,m; |Zn,m| > ε] = 0

Then

Mn,∞ ≡
+∞∑
m=1

Zn,m ⇒ N(0, 1),

as n→ +∞.

Before giving the proof of the MG-CLT, we use it to establish THM 19.13.
Proof:(of THM 19.13) We construct a sequence of MGs as follows. Let Fn,m =
Fm and

Mn,m =
Mm∧τn√

n

so that
Zn,m =

Zm√
n
1{τn ≥ m}.

This is indeed a MG for each n since τn is a ST (and multiplying by a constant
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does not affect the MG property). Moreover

σ2
n,m = E

[(
Zm√
n
1{τn ≥ m}

)2
∣∣∣∣∣Fn,m−1

]
=

1

n
1{τn ≥ m}E[Z2

m | Fm−1]

=
σ2
m

n
1{τn ≥ m},

where we used that {τn ≥ m} ∈ Fm−1. Summing over m and using the bound on
Zm, we get

1 ≤ Γn,∞ =

τn∑
m=1

σ2
m

n
≤ 1 +

K2

n
,

by the definition of τn. So as n→ +∞ , we have Γn,∞ → 1. Also, for any ε > 0,

|Zn,m| =
∣∣∣∣Zm√n1{τn ≥ m}

∣∣∣∣ ≤ K√
n
< ε, ∀m

whenever n is large enough so that

lim
n

+∞∑
m=1

E[|Zn,m|2; |Zn,m| > ε] = 0.

Therefore, the result follows from the MG-CLT after noting that

Mn,∞ =
Mτn√
n
,

where we used the fact that τn < +∞ a.s. by the assumption
∑

n σ
2
n = +∞.

We move on to the proof of the MG-CLT.
Proof:(of THM 19.15) We first assume that there is a constant c such that Γn,∞ ≤
c, for all n. We seek to prove that the following is going to 0 as n→ +∞:∣∣∣E[eitMn,∞ ]− e−t2/2

∣∣∣ ≤ ∣∣∣E[eitMn,∞ − eitMn,∞e−t
2/2et

2Γn,∞/2]

+E[eitMn,∞e−t
2/2et

2Γn,∞/2 − e−t2/2]
∣∣∣

≤ E[|1− e−t2/2et2Γn,∞/2|] +
∣∣∣E[eitMn,∞et

2Γn,∞/2 − 1]
∣∣∣ .

The first term above→ 0 by (BDD) and the assumption that Γn,∞ ≤ c.
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To bound the second term we use a telescoping argument. Write

eitMn,∞et
2Γn,∞/2 − 1 =

∑
m≥1

{
eitMn,met

2Γn,m/2 − eitMn,m−1et
2Γn,m−1/2

}
=

∑
m≥1

eitMn,m−1et
2Γn,m/2

{
eitZn,m − e−t2σ2

n,m/2
}
.

Hence,∣∣∣E[eitMn,∞et
2Γn,∞/2 − 1]

∣∣∣
≤
∑
m≥1

∣∣∣E [eitMn,m−1et
2Γn,m/2

{
eitZn,m − e−t2σ2

n,m/2
}]∣∣∣

≤
∑
m≥1

∣∣∣E [eitMn,m−1et
2Γn,m/2E

[
eitZn,m − e−t2σ2

n,m/2
∣∣∣Fn,m−1

]]∣∣∣
≤ ect2

∑
m≥1

E
[∣∣∣E [eitZn,m − e−t2σ2

n,m/2
∣∣∣Fn,m−1

]∣∣∣]
where we used that Mn,m−1,Γn,m ∈ Fn,m−1 and the assumption that Γn,∞ ≤ c.

We will use the following lemmas proved in a previous lecture.

LEM 19.16 It holds that∣∣∣∣E [eitX]− (1 + itE[X]− t2

2
E[X2]

)∣∣∣∣ ≤ E
[
min{|tX|3, |tX|2}

]
.

LEM 19.17 If z is a complex number then

|ez − (1 + z)| ≤ |z|2e|z|.

By the MG property, E[Zn,m | Fn,m−1]. Also by definition E[Z2
n,m | Fn,m−1] =

σ2
n,m. By LEM 19.16,∣∣∣∣E [eitZn,m

∣∣Fn,m−1

]
−
(

1− t2

2
σ2
n,m

)∣∣∣∣
≤ E

[
|tZn,m|3 ∧ |tZn,m|2 | Fn,m−1

]
≤ E[|tZn,m|3; |Zn,m| ≤ ε | Fn,m−1] + E[|tZn,m|2; |Zn,m| > ε | Fn,m−1]

≤ ε|t|3E[Z2
n,m; |Zn,m| ≤ ε | Fn,m−1] + t2E[Z2

n,m; |Zn,m| > ε | Fn,m−1]

≤ ε|t|3σ2
n,m + t2E[Z2

n,m; |Zn,m| > ε | Fn,m−1].
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By LEM 19.17,∣∣∣∣∣e−t2σ2
n,m/2 −

(
1−

t2σ2
n,m

2

)∣∣∣∣∣ ≤ (t2σ2
n,m/2)2et

2σ2
n,m/2 ≤ t4σ2

n,me
ct2
(

sup
m≥1

σ2
n,m

)
.

Plugging the previous two displays into the equation above, we get∣∣∣E[eitMn,∞et
2Γn,∞/2 − 1]

∣∣∣
≤ ect2

∑
m≥1

E
[∣∣∣E [eitZn,m − e−t2σ2

n,m/2
∣∣∣Fn,m−1

]∣∣∣]

≤ ect2
{
ε|t|3c+ t2

+∞∑
m=1

E[Z2
n,m; |Zn,m| > ε] + t4cect

2
E
[

sup
m≥1

σ2
n,m

]}
.

(Note that the partial sum in the telescoping argument above, eitMn,met
2Γn,m/2−1,

is bounded and therefore we can take the expectation inside by (BDD).) To bound
the supremum, we note that

σ2
n,m ≤ ε2 + E[Z2

n,m; |Zn,m| > ε | Fn,m−1]

≤ ε2 +
+∞∑
i=1

E[Z2
n,i; |Zn,i| > ε | Fn,i−1]

so

E
[

sup
m≥1

σ2
n,m

]
≤ ε2 +

+∞∑
i=1

E[Z2
n,i; |Zn,i| > ε].

Taking n → +∞ and ε > 0 arbitrarily and using the second condition of the
statement, we get ∣∣∣E[eitMn,∞et

2Γn,∞/2 − 1]
∣∣∣→ 0,

for all t. That concludes the proof in the case Γn,∞ ≤ c.
To remove the last assumption, multiply the difference Zn,m by the indicator

that {Γn,m ≤ c} ∈ Fn,m−1 for some c > 1 and apply the argument above. Then
note that P[Γn,∞ ≤ c]→ 1 as n→ +∞ by the first condition of the statement and
use the converging together lemma. See the details in [B].

2 An application: autoregressive processes

Let {Wn}n≥1 be a sequence of IID RVs with |Wn| ≤ c for all n for some constant
c < +∞. Assume that E[W1] = 0 and Var[W1] = ν2. For ρ ∈ (0, 1), consider
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the following autoregressive process (of order 1)

Xn = ρXn−1 +Wn, ∀n ≥ 1

and X0 = 0. Assume that ρ is unknown and that we only observe the sequence
{Xn}. To estimate ρ, we observe that

E[XnXn−1] = E[ρX2
n−1 +WnXn−1] = ρE[X2

n−1],

where we used the independence of Wn and Xn−1 ∈ σ(W1, . . . ,Wn−1). Hence, a
natural estimator for ρ from {Xn} is

ρ̂n ≡
1
n

∑n
k=1XkXk−1

1
n

∑n
k=1X

2
k−1

.

We use the MG-CLT to establish the asymptotic normality of ρ̂n.

CLAIM 19.18 We have √
Ψ∞n

ν2
(ρ̂n − ρ)⇒ N(0, 1),

where Ψ∞ ≡ ν2

1−ρ2 .

Proof: Our starting point is the following observation:

(ρ̂n − ρ)

n∑
k=1

X2
k−1 =

n∑
k=1

XkXk−1 − ρ
n∑
k=1

X2
k−1

=

n∑
k=1

(Xk − ρXk−1)Xk−1

=

n∑
k=1

WkXk−1.

The latter is not a sum of independent RVs, but it turns out to be a MG with respect
to the filtration Fn = σ(W1, . . . ,Wn), as we show next.

LEM 19.19 The process

Mn =
n∑
k=1

WkXk−1, n ≥ 0

is a MG.
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LEM 19.20 We have

Ψn ≡
1

n

n∑
k=1

X2
k−1 →P

ν2

1− ρ2
≡ Ψ∞.

Before proving the two claims, it will be helpful to write by induction

Xn =

n∑
k=1

ρn−kWk, (2)

and define Hn(x) =
∑n

k=1 x
n−k. Then Var[Xn] = E[X2

n] = ν2Hn(ρ2), where
we used that the Wks are independent and have mean 0 and variance ν2. Note also
that by (2) and the bound on |Wn|, we have the following bound

|Xn| ≤
n∑
k=1

ρn−k|Wk| ≤ cHn(ρ). (3)

Proof:(of LEM 19.19) The process {Mn} is adapted by (2) and integrable by the
bounds on |Wn| and |Xn|. Observe further that, since Xk−1 ∈ Fk−1,

E

[
n∑
k=1

WkXk−1

∣∣∣∣∣Fn−1

]
=

n−1∑
k=1

WkXk−1 +Xn−1E [Wn | Fn−1] =
n−1∑
k=1

WkXk−1.

That concludes the proof of the claim.
Proof:(of LEM 19.20) We use Chebyshev’s inequality. We know that

E

[
1

n

n∑
k=1

X2
k−1

]
=

1

n

n∑
k=1

ν2Hk−1(ρ2)→ ν2

1− ρ2
, (4)

as Hn(ρ2)→ 1
1−ρ2 . We need a bound on the variance. Trivially

Var[X2
k ] ≤ E[X4

k ] ≤ {cHk(ρ)}4.

Moreover, for k < `, we writeX` ≡ ρ`−kXk+Y`,k where Y`,k ∈ σ(Wk+1, . . . ,W`)
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and H`(ρ
2) = ρ2(`−k)Hk(ρ

2) +H`−k(ρ
2). Hence,

Cov
[
X2
k , X

2
`

]
= E

[
(X2

k − ν2Hk(ρ
2))(X2

` − ν2H`(ρ
2))
]

= E[(X2
k − ν2Hk(ρ

2))

× ((ρ`−kXk + Y`,k)
2 − ν2[ρ2(`−k)Hk(ρ

2) +H`−k(ρ
2)])]

= E[(X2
k − ν2Hk(ρ

2))

× (ρ2(`−k)X2
k + 2ρ`−kXkY`,k + Y 2

`,k − ν2[ρ2(`−k)Hk(ρ
2) +H`−k(ρ

2)])]

= ρ2(`−k)E[(X2
k − ν2Hk(ρ

2))2]

≤ ρ2(`−k){cHk(ρ)}4.

Therefore

Var

[
1

n

n∑
k=1

X2
k−1

]
=

2

n2

∑
0≤k≤`≤n−1

ρ2(`−k){cHk(ρ)}4

=
2c4

n2(1− ρ)4

∑
0≤k≤`≤n−1

ρ2(`−k)

≤ 2c4n

n2(1− ρ)4

∑
0≤m≤+∞

ρ2m

≤ 2c4

n(1− ρ)4(1− ρ2)

≡ K

n
.

By Chebyshev’s inequality,

P

[∣∣∣∣∣ 1n
n∑
k=1

X2
k−1 − E

[
1

n

n∑
k=1

X2
k−1

]∣∣∣∣∣ ≥ δ
]
≤ K/n

δ2
→ 0,

as n→ +∞. Together with (4), that proves the claim.
We apply the MG-CLT with

Mn,m =
Mm∧n√
nΨ∞ν2

,

and Fn,m = Fm. Then

Zn,m =
Mm −Mm−1√

nΨ∞ν2
1{m ≤ n} =

WmXm−1√
nΨ∞ν2

1{m ≤ n},
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and

σ2
n,m = E[Z2

n,m | Fn,m−1]

= 1{m ≤ n}
X2
m−1

nΨ∞ν2
E[W 2

m | Fm−1]

= 1{m ≤ n}
X2
m−1

nΨ∞ν2
ν2,

and

Γn,∞ =
1

Ψ∞

1

n

n∑
m=1

X2
m−1 =

Ψn

Ψ∞
→P 1,

as n → +∞ by LEM 19.20. To check the second condition in the MG-CLT, we
note that

|Zn,m| =
∣∣∣∣WmXm−1√

nΨ∞ν2
1{m ≤ n}

∣∣∣∣ ≤ c(cHn(ρ))√
nΨ∞ν2

≤ c2

(1− ρ)
√

Ψ∞ν2
× 1√

n
≤ ε,

for all n large enough. The MG-CLT then says that

Mn√
nΨ∞ν2

⇒ N(0, 1)

or put differently, that

√
n(ρ̂n − ρ)× 1√

Ψ∞ν2
× 1

n

n∑
k=1

X2
k−1 ⇒ N(0, 1).

By LEM 19.5 and LEM 19.20, we finally have√
Ψ∞n

ν2
(ρ̂n − ρ)⇒ N(0, 1).

That concludes the proof of CLAIM 19.18.
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