
Notes 20 : Azuma’s inequality

Math 733-734: Theory of Probability Lecturer: Sebastien Roch

References: [Roc, Sections 3.2].
Recall:

THM 20.1 (Markov’s inequality) LetX be a non-negative random variable. Then,
for all b > 0,

P[X ≥ b] ≤ EX
b
. (1)

DEF 20.2 (Moment-generating function) The moment-generating function ofX
is the function

MX(s) = E
[
esX
]
,

defined for all s ∈ R where it is finite, which includes at least s = 0.

THM 20.3 (Chernoff-Cramér bound) Assume X is a centered random variable
such that MX(s) < +∞ for s ∈ (−s0, s0) for some s0 > 0. For any β > 0 and
s > 0,

P[X ≥ β] ≤ exp [−{sβ −ΨX(s)}] , (2)

where

ΨX(s) = logMX(s),

is the cumulant-generating function of X .

EX 20.4 (Gaussian random variables) Let X ∼ N(0, ν) where ν > 0 is the
variance. We have

MX(s) = exp

(
s2ν

2

)
,

so that straightforward calculus gives for β > 0

sup
s>0

(sβ − s2ν/2) =
β2

2ν
, (3)

achieved at sβ = β/ν. Plugging this into (2) leads for β > 0 to the bound

P[X ≥ β] ≤ exp

(
−β

2

2ν

)
. (4)
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We say that a centered random variable X is sub-Gaussian with variance factor
ν > 0 if for all s ∈ R

ΨX(s) ≤ s2ν

2
,

which is denoted by X ∈ G(ν). By the Chernoff-Cramér bound, it follows that

P [X ≥ β] ≤ exp

(
−β

2

2ν

)
. (5)

THM 20.5 (Hoeffding’s inequality) LetX1, . . . , Xn be independent random vari-
ables where, for each i, Xi takes values in [ai, bi] with −∞ < ai ≤ bi < +∞. Let
Sn =

∑
i≤nXi. For all β > 0,

P[Sn − ESn ≥ β] ≤ exp

(
− 2β2∑

i≤n(bi − ai)2

)
.

LEM 20.6 (Hoeffding’s lemma) Let X be a random variable taking values in
[a, b] for −∞ < a ≤ b < +∞. Then X − EX ∈ G

(
1
4(b− a)2

)
.

We will also need:

LEM 20.7 (Orthogonality of increments) Let {Mn} be a MG with Mn ∈ L2.
Let s ≤ t ≤ u ≤ v. Then,

〈Mt −Ms,Mv −Mu〉 = 0.

1 Concentration for martingales

The Chernoff-Cramér method extends naturally to martingales. This observation
leads to powerful new concentration inequalities that hold far beyond the case of
sums of independent variables. In particular, it will allow us to prove one version
of the concentration phenomenon, which can be stated informally as:

If X1, . . . , Xn are independent (or “weakly dependent”) random vari-
ables, then the random variable f(X1, . . . , Xn) is “close” to its mean
Ef(X1, . . . , Xn) provided that the function f(x1, . . . , xn) is not too
“sensitive” to any of the coordinates xi.
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1.1 Azuma-Hoeffding inequality

The main result of this section is the following generalization of Hoeffding’s in-
equality (THM 20.5).

THM 20.8 (Azuma-Hoeffding inequality) Let (Zt)t∈Z+ be a martingale with re-
spect to the filtration (Ft)t∈Z+ . Assume that there are predictable processes (At)
and (Bt) (i.e., At, Bt ∈ Ft−1) and constants 0 < ct < +∞ such that: for all
t ≥ 1, almost surely,

At ≤ Zt − Zt−1 ≤ Bt and Bt −At ≤ ct.

Then for all β > 0

P[Zt − Z0 ≥ β] ≤ exp

(
− 2β2∑

i≤t c
2
i

)
.

Applying this inequality to (−Zt) gives a tail bound in the other direction.
Proof:[Proof of THM 20.8] As in the Chernoff-Cramér method, we start by apply-
ing (the exponential version of) Markov’s inequality (THM 20.1), for s > 0,

P[Zt − Z0 ≥ β] ≤
E
[
es(Zt−Z0)

]
esβ

=
E
[
es

∑t
r=1(Zr−Zr−1)

]
esβ

. (6)

This time, however, the terms in the exponent are not independent. Instead, to
exploit the martingale property, we condition on the filtration

E
[
E
[
es

∑t
r=1(Zr−Zr−1)

∣∣∣Ft−1]] = E
[
es

∑t−1
r=1(Zr−Zr−1) E

[
es(Zt−Zt−1)

∣∣∣Ft−1]] .
The assumption in the statement implies that, conditioned on Ft−1, the random
variable Zt − Zt−1 lies in an interval of length ct. Hence by Hoeffding’s lemma
(LEM 20.6), it holds almost surely that

E
[
es(Zt−Zt−1)

∣∣∣Ft−1] ≤ exp

(
s2c2t /4

2

)
= exp

(
c2t s

2

8

)
. (7)

Arguing by induction, we obtain

E
[
es(Zt−Z0)

]
≤ exp

(
s2
∑

r≤t c
2
r

8

)
.

Put differently, we have proved that Zt − Z0 is sub-Gaussian with variance factor
1
4

∑
r≤t c

2
r . Choosing s = β/14

∑
r≤t c

2
r in (6) gives the result.
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1.2 Method of bounded differences

The power of the Azuma-Hoeffding inequality is that it produces tail inequalities
for quantities other than sums of independent random variables. The setting is
the following. Let X1, . . . , Xn be independent random variables where Xi is Xi-
valued for all i and let X = (X1, . . . , Xn). Assume that f : X1 × · · · × Xn → R
is a measurable function. Our goal is to characterize the concentration properties
of f(X) around its expectation in terms of its “discrete derivatives”

Dif(x) := sup
y∈Xi

f(x1, . . . , xi−1, y, xi+1, . . . , xn)

− inf
y′∈Xi

f(x1, . . . , xi−1, y
′, xi+1, . . . , xn),

where x = (x1, . . . , xn) ∈ X1 × · · · × Xn. We think of Dif(x) as a measure of
the “sensitivity” of f to its i-th coordinate.

To analyze the behavior of f(X), the idea is to consider the Doob martingale

Zi = E[f(X) | Fi], (8)

where Fi = σ(X1, . . . , Xi), which is well-defined provided E|f(X)| < +∞.
Note that Zn = E[f(X) | Fn] = f(X) and Z0 = E[f(X)] so that we can write

f(X)− E[f(X)] =

n∑
i=1

(Zi − Zi−1).

A clever observation relates the martingale differences to the discrete derivatives
through the use of an independent copy of X . Let X ′ = (X ′1, . . . , X

′
n) be an

independent copy of X and let

X(i) = (X1, . . . , Xi−1, X
′
i, Xi+1, . . . , Xn).

Then

Zi − Zi−1 = E[f(X) | Fi]− E[f(X) | Fi−1]
= E[f(X) | Fi]− E[f(X(i)) | Fi−1]
= E[f(X) | Fi]− E[f(X(i)) | Fi]
= E[f(X)− f(X(i)) | Fi].

Note that we crucially used the independence of the Xks in the second and third
lines. But then, by Jensen’s inequality,

|Zi − Zi−1| ≤ ‖Dif‖∞. (9)
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By the orthogonality of increments of martingales in L2, we immediately ob-
tain

Var[f(X)] = E[(Zn − Z0)
2] =

n∑
i=1

E
[
(Zi − Zi−1)2

]
≤

n∑
i=1

‖Dif‖2∞.

Moreover, by the Azuma-Hoeffding inequality (THM 20.8) and the fact that Zi −
Zi−1 ∈ [−‖Dif‖∞, ‖Dif‖∞],

P[f(X)− E[f(X)] ≥ β] ≤ exp

(
− β2

2
∑

i≤n ‖Dif‖2∞

)
.

A more careful analysis, which we do not detail here (but see [Roc]), leads to better
bounds:

THM 20.9 (Bounded differences inequality) LetX1, . . . , Xn be independent ran-
dom variables where Xi is Xi-valued for all i and let X = (X1, . . . , Xn). Assume
that f : X1×· · ·×Xn → R is a measurable function with E[f(X)2] < +∞. Then

Var[f(X)] ≤ 1

4

n∑
i=1

E[Dif(X)2].

.

THM 20.10 (McDiarmid’s inequality) Let X1, . . . , Xn be independent random
variables where Xi is Xi-valued for all i, and let X = (X1, . . . , Xn). Assume
f : X1 × · · · × Xn → R is a measurable function such that ‖Dif‖∞ < +∞ for
all i. Then for all β > 0

P[f(X)− Ef(X) ≥ β] ≤ exp

(
− 2β2∑

i≤n ‖Dif‖2∞

)
.

Terminology: Bounds on ‖Dif‖∞ are often phrased in terms of a Lipschitz
condition under an appropriate metric. Recall that the Hamming distance is defined
as

ρ(x, x′) :=
n∑
i=1

1{xi 6=x′i}.

DEF 20.11 (Lipschitz condition) Let 0 < c < +∞. We say that the function
f : X1 × · · · × Xn → R is c-Lipschitz (with respect to the Hamming distance) if
for all x, x′ ∈ X1 × · · · × Xn

|f(x)− f(x′)| ≤ cρ(x, x′).

LEM 20.12 If f is c-Lipschitz, then ‖Dif‖∞ ≤ c for all i.
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1.3 Examples

In this section, we give a few examples.

EX 20.13 (Longest common subsequence) LetX1, . . . , X2n be independent uni-
form random variables in {−1,+1}. Let Z be the length of the longest common
subsequence in (X1, . . . , Xn) and (Xn+1, . . . , X2n), that is,

Z = max
{
k :∃1 ≤ i1 < i2 < · · · < ik ≤ n

and n+ 1 ≤ j1 < j2 < · · · < jk ≤ 2n

such that Xi1 = Xj1 , Xi2 = Xi2 , . . . , Xik = Xjk

}
.

Then, writing Z = f(X1, . . . , X2n), it follows that ‖Dif‖∞ ≤ 1. Indeed, fix
x = (x1, . . . , x2n) and let xi,+ (respectively xi,−) be x where the i-th component is
replaced with +1 (respectively−1). Assume w.l.o.g. that f(xi,−) ≤ f(xi,+). Then
|f(xi,+)−f(xi,−)| ≤ 1 because removing the i-th component (and its match) from
a longest common subsequence when xi = +1 (if present) decreases the length by
1. Since this is true for any x, we have ‖Dif‖∞ ≤ 1. Finally, by THM 20.9,

Var[Z] ≤ 1

4

2n∑
i=1

‖Dif‖2∞ ≤
n

2
.

EX 20.14 (Balls and bins: empty bins) Suppose we throwm balls into n bins in-
dependently, uniformly at random. The number of empty bins, Zn,m, is centered
at

EZn,m = n

(
1− 1

n

)m
.

Writing Zn,m as the sum of indicators
∑n

i=1 1Bi , where Bi is the event that bin
i is empty, is a natural first attempt at proving concentration around the mean.
However there is a problem—the Bis are not independent. Indeed, because there
is a fixed number of bins, the event Bi intuitively makes the other such events less
likely. Instead let Xj be the index of the bin in which ball j lands. The Xjs are
independent by construction and, moreover, Zn,m = f(X1, . . . , Xm) where f is
1-Lipschitz. Indeed, moving a single ball changes the number of empty bins by at
most 1 (if at all). Hence by the method of bounded differences

P
[∣∣∣∣Zn,m − n(1− 1

n

)m∣∣∣∣ ≥ b√m] ≤ 2e−2b
2
.

EX 20.15 (Concentration of measure on the hypercube) ForA ⊆ {0, 1}n a sub-
set of the hypercube and r > 0, we let

Ar =

{
x ∈ {0, 1}n : inf

a∈A
‖x− a‖1 ≤ r

}
,
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be the points at `1 distance r from A. Fix ε ∈ (0, 1/2) and assume that |A| ≥ ε2n.
Let λε be such that e−2λ

2
ε = ε. The following application of the method of bounded

differences indicates that much of the uniform measure on the high-dimensional
hypercube lies in a close neighborhood of any such “small” set A. This is an
example of the concentration of measure phenomenon.

CLAIM 20.16
r > 2λε

√
n =⇒ |Ar| ≥ (1− ε)2n.

Proof: Let X = (X1, . . . , Xn) be uniformly distributed in {0, 1}n. Note that the
coordinates are in fact independent. The function f(x) = infa∈A ‖x − a‖1 is 1-
Lipschitz. Indeed changing one coordinate of x can only increase the `1 distance to
the closest point to x by at most 1 (and vice versa, if changing a coordinate led to a
decrease of more than 1, then reversing the change would lead to a contradiction).
Hence McDiarmid’s inequality (Theorem 20.10) gives

P [Ef(X)− f(X) ≥ β] ≤ exp

(
−2β2

n

)
.

Choosing β = Ef(X) and noting that f(x) ≤ 0 if and only if x ∈ A gives

P[A] ≤ exp

(
−2(Ef(X))2

n

)
,

or, rearranging and using our assumption on A,

Ef(X) ≤

√
1

2
n log

1

P[A]
≤
√

1

2
n log

1

ε
= λε

√
n.

By a second application of the method of bounded differences with β = λε
√
n,

P
[
f(X) ≥ 2λε

√
n
]
≤ P [f(X)− Ef(X) ≥ b] ≤ exp

(
−2β2

n

)
= ε.

The result follows by observing that, with r > 2λε
√
n,

|Ar|
2n
≥ P

[
f(X) < 2λε

√
n
]
≥ 1− ε.

CLAIM 20.16 is striking for two reasons: 1) the radius 2λε
√
n is much smaller

than n, the diameter of {0, 1}n; and 2) it applies to any A.
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2 Erdös-Rényi: exposure martingales and application to
the chromatic number

Recall that an undirected graph (or graph for short) is a pair G = (V,E) where V
is the set of vertices (or nodes or sites) and

E ⊆ {{u, v} : u, v ∈ V },

is the set of edges (or bonds). If e = {u, v} ∈ E, we say that e is incident to
u and v and that u and v are adjacent. A subgraph of G = (V,E) is a graph
G′ = (V ′, E′) with V ′ ⊆ V and E′ ⊆ E.

DEF 20.17 (Erdös-Rényi graphs) Let V = [n] and p ∈ [0, 1]. The Erdös-Rényi
graph G = (V,E) on n vertices with density p is defined as follows: for each pair
x 6= y in V , the edge {x, y} is in E with probability p independently of all other
edges. We write G ∼ Gn,p and we denote the corresponding measure by Pn,p.

Exposure martingales In the context of Erdös-Rényi graphs, a common way
to apply the Azuma-Hoeffding inequality (THM 20.8) is to introduce a so-called
exposure martingale. Let G = (V,E) ∼ Gn,p and let F be any function on
graphs such that En,p|F (G)| < +∞ for all n, p. Choose an arbitrary ordering of
the vertices (i.e., think of V as {1, . . . , n}) and, for i = 1, . . . , n, denote by Hi

the subgraph G restricted to its first i vertices: its vertex set is Vi = {1, . . . , i}
and its edges are Ei = {{u, v} ∈ E : u, v ∈ Vi}. Then the filtration Hi =
σ(H1, . . . ,Hi), i = 1, . . . , n, corresponds to exposing the vertices of G one at a
time. The Doob martingale

Zi = En,p[F (G) |Hi], i = 1, . . . , n,

is known as a vertex exposure martingale. An alternative way to define the filtration
is to consider instead the random variables Xi = (1{{i,j}∈G} : 1 ≤ j ≤ i) for
i = 2, . . . , n. In words, Xi is a vector whose entries indicate the status (present
or absent) of all potential edges incident to i and a vertex preceding it. Hence,
Hi = σ(X2, . . . , Xi) for i = 2, . . . , n (and note thatH1 is trivial as it corresponds
to a graph with a single vertex and no edge). This representation has an important
property: the Xis are independent as they pertain to disjoint subsets of edges. We
are then in the setting of the method of bounded differences. Re-writing F (G) =
f(X2, . . . , Xn) for some function f , the vertex exposure martingale coincides with
the martingale (8) used in that context.
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Chromatic number As an example, consider the chromatic number χ(G), i.e.,
the smallest number of colors needed in a proper coloring of G (that is, an assign-
ment of colors to the vertices such that any two adjacent vertices have different
colors). Define

fχ(X2, . . . , Xn) := χ(G).

We use the following combinatorial observation to bound ‖Difχ‖∞.

LEM 20.18 Altering the status (absent or present) of edges incident to a fixed
vertex v changes the chromatic number by at most 1.

Proof: Altering the status of edges incident to v increases the chromatic number
by at most 1, since in the worst case one can simply use an extra color for v. On
the other hand, if the chromatic number were to decrease by more than 1 after al-
tering the status of edges incident to v, reversing the change and using the previous
observation would produce a contradiction.
A fortiori, sinceXi depends on a subset of the edges incident to node i, LEM 20.18
implies that fχ is 1-Lipschitz. Hence, for all 0 < p < 1 and n, by an immediate
application of the McDiarmid’s inequality (THM 20.10):

CLAIM 20.19

Pn,p
[
|χ(G)− En,p[χ(G)]| ≥ b

√
n− 1

]
≤ 2e−2b

2
.

Edge exposure can be defined in a manner similar to vertex exposure: reveal
the edges one at a time in an arbitrary order. By LEM 20.18, the corresponding
function is again 1-Lipschitz. Observe however that, for the chromatic number,
edge exposure results in a much weaker bound as the Θ(n2) random variables
produce only a linear in n deviation for the same tail probability. (The reader
may want to ponder the apparent paradox: using a larger number of independent
variables seemingly leads to weaker concentration in this case.)

3 A maximal Azuma-Hoeffding inequality

By using Doob’s subMG inequality instead of Markov’s inequality in the proof
of Azuma-Hoeffding, we obtain a maximal version, which is sometimes useful to
avoid union bounds. We will not detail applications here, but see [Roc].

THM 20.20 (Maximal Azuma-Hoeffding inequality) Let (Zt)t∈Z+ be a martin-
gale with respect to the filtration (Ft)t∈Z+ . Assume that there are predictable
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processes (At) and (Bt) (i.e., At, Bt ∈ Ft−1) and constants 0 < ct < +∞ such
that: for all t ≥ 1, almost surely,

At ≤ Zt − Zt−1 ≤ Bt and Bt −At ≤ ct.

Then for all β > 0

P
[

sup
0≤i≤t

(Zi − Z0) ≥ β
]
≤ exp

(
− 2β2∑

i≤t c
2
i

)
.

We first give a proof of the subMG inequality using stopping times.

LEM 20.21 Let (Mt) be a submartingale and τ ≤ σ be stopping times. Then

E[Mτ∧t] ≤ E[Mσ∧t].

Proof: Consider the predictable process

C(τ)
n = 1{n ≤ τ},

and similarly for σ. Note that by the assumption τ ≤ σ

C(τ)
n = 1{n ≤ τ} ≤ 1{n ≤ σ} = C(σ)

n .

Observe that

Mσ∧t −Mτ∧t = (C(σ) •X)n − (C(τ) •X)n

=
∑
1≤i≤t

(C
(σ)
i − C(τ)

i )(Xi −Xi−1).

Hence

E [Mσ∧t −Mτ∧t] =
∑
1≤i≤t

E
[
(C

(σ)
i − C(τ)

i )(Mi −Mi−1)
]

=
∑
1≤i≤t

E
[
E
[
(C

(σ)
i − C(τ)

i )(Mi −Mi−1) | Fi−1
]]

=
∑
1≤i≤t

E
[
(C

(σ)
i − C(τ)

i )E [Mi −Mi−1 | Fi−1]
]

≥ 0,

where we used the subMG property.
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LEM 20.22 (Doob’s submartingale inequality) Let {Mt} be a nonnegative sub-
martingale. Then for b > 0

P
[

sup
0≤i≤t

Mi ≥ b
]
≤ E[Mt]

b
.

(Markov’s inequality implies only sup0≤i≤t P[Mi ≥ b] ≤ E[Mt]
b from the fact that

E[Mi] ≤ E[Mt] for i ≤ t.)
Proof: Let τ = inf{i ≥ 0 : Mi ≥ b}. Let σ = t in the lemma above. Then
E[Mτ∧t] ≤ E[Mt]. In addition,

E[Mt] ≥ E[Mτ∧t] ≥ bP[τ ≤ t] = bP
[

sup
0≤i≤t

Mi ≥ b
]
,

where we used the nonnegativity of {Mt}.
Before proving THM 20.20, we recall one last lemma:

LEM 20.23 If {Mt} is a martingale and φ is a convex function with E|φ(Mt)| <
+∞ for all t then {φ(Mt)} is a submartingale.

Proof: By Jensen’s inequality

E[φ(Mt) | Ft−1] ≥ φ(E[Mt | Ft−1]) = φ(Mt−1).

Proof:(Proof of THM 20.20) We simply note that, by Doob’s subMG inequality,
for s > 0

P
[

sup
0≤i≤t

(Zi − Z0) ≥ β
]

= P
[

sup
0≤i≤t

es(Zi−Z0) ≥ esβ
]

≤
E
[
es(Zt−Z0)

]
esβ

,

where we used the fact that esx is increasing and convex for s > 0. The rest of the
proof is unchanged.
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