
Notes 21 : Markov chains: definitions, properties

Math 733-734: Theory of Probability Lecturer: Sebastien Roch

References: [Dur10, Sections 6.1-4] and [Nor98, Sections 1.1-6].
We will need:

THM 21.1 (Monotone class theorem) LetH be a class of bounded functions from
a set S to R satisfying:

1. H is a vector space over R.

2. The constant 1 is an element ofH.

3. If (fn)n is a sequence of non-negative functions inH such that fn ↑ f where
f is a bounded function on S, then f ∈ H.

Then if H contains the indicator function of every set in some π-system I, then H
contains every bounded σ(I)-measurable function on S.

See Theorem 6.1.3 in [Dur10].

LEM 21.2 (Conditioning on an independent RV) Let X and Y be RVs taking
values in (Sx,Sx) and (Sy,Sy) respectively. Suppose F and Y are independent.
Let X ∈ F and φ : Sx × Sy → R be a bounded measurable function. Define
g(x) = E(φ(x, Y )). Then,

E(φ(X,Y )|F) = g(X).

Proof: If φ(x, y) is of the form 1{(x, y) ∈ A×B} for sets A,B ∈ S, then for any
C ∈ F ,

E[φ(X,Y );C] = P[{X ∈ A, Y ∈ B} ∩ C]

= P[({X ∈ A} ∩ C) ∩ {Y ∈ B}]
= P[{X ∈ A} ∩ C]P[Y ∈ B]

= E[1{X ∈ A}P[Y ∈ B];C]

= E[g(X);C],

1
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since indeed g(x) = E[φ(x, Y )] = E[1{x ∈ A}1{Y ∈ B}] = 1{x ∈ A}P[Y ∈
B]. Because sets of the formA×B are a π-system that contains Ω and generates the
product σ-field, the monotone class theorem (together with bounded convergence)
gives the result if one takesH to be those functions φ for which the equality in the
statement holds.

1 Definition

Markov chains are an important class of stochastic processes, with many applica-
tions. We will restrict ourselves here to the temporally-homogeneous discrete-time
case. The main definition follows.

DEF 21.3 (Markov chain) Let (S,S) be a measurable space. A function p : S ×
S → R is said to be a transition kernel if:

1. For each x ∈ S, A→ p(x,A) is a probability measure on (S,S).

2. For each A ∈ S , x→ p(x,A) is a measurable function.

We say that {Xn}n≥0 is a Markov chain (MC) with transition kernel p if

P[Xn+1 ∈ B | Fn] = p(Xn, B) ∀B ∈ S. (1)

We refer to the law of X0 as the initial distribution.

The key in (1) is that the RHS depends only on Xn—not on the full history up to
time n.

We have already encountered many examples.

EX 21.4 (Random walk in Rd) Let Z1, Z2, . . . be i.i.d. Rd-valued RVs with dis-
tribution µ. Define Fn = σ(Z1, . . . , Zn). For some fixed x ∈ Rd, let X0 = z0 and
Xn = z0 + Z1 + · · ·+ Zn. Then:

CLAIM 21.5 The process {Xn}, as defined above, is an MC with transition kernel

p(x,B) = µ(B − x),

where, for any B ∈ B(Rd), we define B − x := {y − x : y ∈ B}.

Proof: We use LEM 21.2 withF = Fn,X = Xn, Y = Zn+1, φ(x, y) = 1{x+y ∈
B} and

g(x) = E[φ(x, Y )] = P[x+ Zn+1 ∈ B] = P[Zn+1 ∈ B − x] = µ(B − x),
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by definition of µ. Note that Zn+1 is indeed independent of Fn. Note also that
p(x,B) = µ(B − x) = E[φ(x, Y )] is measurable for any x by Fubini’s theorem.
Then the conclusion of LEM 21.2 reads

E[1{Xn + Zn+1 ∈ B} |Fn] = µ(B −Xn),

or put differently

P[Xn+1 ∈ B | Fn] = p(Xn, B),

as desired.

EX 21.6 (Countable-space MCs) Let S be countable with S = 2S , let µ be a
probability measure on S, and let p : S × S → [0, 1] such that∑

j∈S
p(i, j) = 1, ∀i ∈ S.

That is, for each i, p(i, ·) is a probability distribution on S. We extend the notation
to sets as follows: p(x,B) =

∑
j∈B p(x, j) (which is measurable as a function of

x since its values are discrete). We construct a MC on S whose transition kernel
is p. (Alternatively, we could use Kolmogorov’s extension theorem. See Theorem
6.1.1 in [Dur10].) Consider the array

{Z(n, i) : n ≥ 0, i ∈ S},

where the entries are independent and for each n and i

Z(n, i) ∼ p(i, ·).

Then pick X0 ∼ µ and define by induction

Xn = Z(n,Xn−1).

We also let Fn = σ(X0, Z(1, ·), . . . , Z(n, ·)).

CLAIM 21.7 The process {Xn}, as defined above, is an MC with transition kernel
p.

Proof: For any B ∈ S,

P[Xn+1 ∈ B | Fn] = P[Z(n+ 1, Xn) ∈ B |X0, Z(1, ·), . . . , Z(n, ·)].
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To compute the RHS, we use again LEM 21.2. Take X = Xn, Y (·) = Z(n+ 1, ·),
φ(x, y) = 1{y(x) ∈ B}, F = Fn, and

g(x) = E[φ(x, Y )] = P[Z(n+ 1, x) ∈ B] = p(x,B).

Then by LEM 21.2,

P[Z(n+ 1, Xn) ∈ B |X0, Z(1, ·), . . . , Z(n, ·)] = E[φ(X,Y ) | F ]

= g(X)

= p(Xn, B),

as desired.

The last example includes many important special cases we have seen in previous
lectures. We refer to the p(i, j)s as transition probabilities.

EX 21.8 (Branching process) Let {qi}i≥0 be a probability distribution on non-
negative integers and let {Zm} be i.i.d. with distribution {qi}i≥0. Then, the MC
{Xn} on S = {0, 1, . . .} with transition probability

p(i, j) = P

[
i∑

m=1

Zm = j

]
,

is a branching process with offspring distribution {qi}i≥0.

EX 21.9 (Birth-death chain) An MC on S = {0, 1, . . .} with the restriction that
p(i, j) = 0 if |i− j| > 1 is called a birth-death chain. The standard notation is

p(i, i+ 1) = pi, p(i, i− 1) = qi, p(i, i) = ri,

where q0 = 0.

2 The Markov property and some formulas

An advantage of MCs is that they admit simple formulas. We first extend the
defining property of MCs. We will often indicate the initial distribution µ with a
subscript: Pµ, Eµ. We will also use the notation Px, Ex for the case where the
initial distribution is a point mass at x ∈ S.

LEM 21.10 (One-step expectation) Let {Xn} be an MC on S with transition
kernel p and initial distribution µ. Then for any bounded measurable function
f : S → R

E[f(Xn+1) | Fn] =

∫
f(y) p(Xn,dy).
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Proof: Let H be the set of bounded functions for which the identity holds. The
result follows from the definition of an MC and the monotone class theorem.

LEM 21.11 (Finite-dimensional distributions) Let {Xn} be an MC on S with
transition kernel p and initial distribution µ. Then, for any bounded measurable
function fk : S → R, k = 0, . . . ,m,

E

[
m∏
k=0

fk(Xn+k)

∣∣∣∣∣Fn
]

= f0(Xn)

∫
f1(xn+1)p(Xn, dxn+1) · · ·

∫
fm(xn+m)p(xn+m−1,dxn+m).

In particular

E

[
m∏
k=0

fk(Xk)

]

=

∫
f0(x0)µ(dx0)

∫
f1(x1)p(x0, dx1) · · ·

∫
fn(xn)p(xn−1,dxn).

Proof: By the previous lemma and the tower property

E

[
m∏
k=0

fk(Xn+k)

∣∣∣∣∣Fn
]

= E

[
E

[
m∏
k=0

fk(Xn+k)

∣∣∣∣∣Fn+m−1
] ∣∣∣∣∣Fn

]

= E

[
m−1∏
k=0

fk(Xn+k)E [fm(Xn+m) | Fn+m−1]

∣∣∣∣∣Fn
]

= E

[
m−1∏
k=0

fk(Xn+k)

∫
fm(xn+m) p(Xn+m−1,dxn+m)

∣∣∣∣∣Fn
]
.

We proceed by induction and note that the last step, a function of Xn only, is Fn-
measurable.

The second formula in the statement follows from the first one by taking n = 0
and taking an expectation over X0.
The previous result “extends to infinity,” in what is usually referred to as the
Markov property.
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THM 21.12 (Markov property) Let {Xn} be an MC on S with transition kernel
p. Let h be a bounded measurable function from SZ+ to R. Then

Eµ[h(Xn, Xn+1, . . .) | Fn] = φ(Xn), (2)

where

φ(x) = Ex[h(Xn, Xn+1, . . .)].

Again, note that the RHS in (2) is a function ofXn only. In fact, the statement says
something stronger: given the history up to time n, the process “reboots” at Xn.
Proof: Let gk(x) = 1{x ∈ Ak} for k = 0, . . . ,m. Sets of the formA0×· · ·×Am
(for arbitrarym) form a π-system generating the infinite product σ-field. Hence, by
the monotone class theorem (whereH is the class of bounded measurable functions
h satisfying (2)), it suffices to show that for all B ∈ Fn

Eµ

[
m∏
k=0

gk(Xn+k);B

]
= Eµ [φ(Xn);B]

where

φ(x) = Ex

[
m∏
k=0

gk(Xk)

]
.

This is precisely the content of LEM 21.11 above.
For indicators, LEM 21.11 immediately gives:

THM 21.13 Let {Xn} be an MC on S with transition kernel p. For allB0, . . . , Bn ∈
S

Pµ[X0 ∈ B0, . . . , Xn ∈ Bn] =

∫
B0

µ(dx0)

∫
B1

p(x0,dx1) · · ·
∫
Bn

p(xn−1,dxn).

In the countable case, THM 21.13 immediately gives:

THM 21.14 (Probability of a sample path) Let {Xn} be an MC on a countable
set S with transition probability p. Then for all i0, i1, . . . , in ∈ S

Pµ[X0 = i0, . . . , Xn = in] = µ(i0)
n∏

m=1

p(im−1, im).

Also, the distribution at time n is a matrix product.
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THM 21.15 (Distribution at time n) Let {Xn} be an MC on a countable set S
with transition probability p. Then for all n ≥ 0 and j ∈ S

Pµ[Xn = j] =
∑
i∈S

µ(i)pn(i, j),

where pn is the n-th matrix power of p, i.e.,

pn(i, j) =
∑

k1,...,kn−1

p(i, k1) p(k1, k2) · · · p(kn−1, j).

By induction,
∑

j∈S p
n(i, j) = 1. Another consequence of the previous theorem

is:

THM 21.16 (Chapman-Kolmogorov) Let {Xn} be an MC on a countable set S
with transition probability p. Then for all n,m ≥ 0 and i, k ∈ S

Pi[Xn+m = k] =
∑
j

Pi[Xn = j]Pj [Xm = k].

3 Strong Markov property

The Markov property extends to stopping times.
First recall:

DEF 21.17 A random variable T : Ω → Z+ ≡ {0, 1, . . . ,+∞} is called a
stopping time if

{T = n} ∈ Fn, ∀n ∈ Z+.

EX 21.18 Let {An} be an adapted process and B ∈ B. Then

T = inf{n ≥ 0 : An ∈ B},

is a stopping time.

DEF 21.19 (FT ) Let T be a stopping time. Denote by FT the set of all events F
such that ∀n ∈ Z+

F ∩ {T = n} ∈ Fn.

Our main result is the following.
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THM 21.20 (Strong Markov property) Let {Xn} be an MC on S with transi-
tion kernel p. Let T be a stopping time. For each n ≥ 0, let hn be a bounded
measurable function from SZ+ to R. Then, on {T < +∞},

Eµ[hT (XT , XT+1, . . .) | FT ] = φT (XT ),

where

φn(x) = Ex[hn(Xn, Xn+1, . . .)].

Proof: The proof uses a standard trick: summing over the possible values of T .
Let A ∈ FT . Then

Eµ[hT (XT , XT+1, . . .);A ∩ {T < +∞}]

=

+∞∑
n=0

Eµ[hn(Xn, Xn+1, . . .);A ∩ {T = n}]

=
+∞∑
n=0

Eµ[φn(Xn);A ∩ {T = n}]

= Eµ[φT (XT );A ∩ {T < +∞}],

where we used THM 21.12 and A ∩ {T = n} ∈ Fn.

4 Recurrence

In this section, we assume that S is countable.
We generalize the notion of recurrence (which we earlier introduced in the

context of RWs) to MCs. Let {Xn} be an MC on a countable set S with transition
probability p. For x ∈ S, let T 0

x = 0 and for k ≥ 1 let

T kx = inf{n > T k−1x : Xn = x},

be the time of the k-th return to x.

LEM 21.21 T kx is a stopping time.

Proof: Arguing by induction on k,

{T kx = n} =
n−1⋃
m=1

[
{T k−1x = m} ∩ {Xm+1, . . . , Xn−1 6= x} ∩ {Xn = x}

]
∈ Fn.
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We sometimes use the notation T+
x = T 1

x . Let

ρxy = Px[T+
y < +∞],

that is, ρxy is the probability of ever reaching y when started at x.

DEF 21.22 (Recurrence) A state x ∈ S is recurrent if ρxx = 1. Otherwise it is
transient.

Let

N(x) =
∑
n≥1

1{Xn = x},

be the number of visits to x (after time 0). To give further insights into the definition
above, we prove:

THM 21.23 Let {Xn} be an MC on a countable set S with transition probability
p. If y is recurrent, then

Py[Xn = y i.o.] = 1.

THM 21.24 Let {Xn} be an MC on a countable set S with transition probability
p. If y is transient, then for any x

Ex[N(y)] < +∞.

Combining the last two theorems implies in particular that

x is recurrent if and only if Ex[N(x)] =
∑
n≥1

pn(x, x) = +∞, (3)

where the first equality above comes from writing N(x) as a sum of indicators.
(Note that the first statement above is in fact stronger.) THM 21.23 and 21.24 are
a consequence of the strong Markov property through the following formula. In
words, for {T ky < +∞} to hold, we first need to visit y once and then come back
to it k − 1 times. Each of these visits is “independent conditioned on the previous
one” by the strong Markov property.

LEM 21.25 (Probability of k-th return) Let {Xn} be an MC on a countable set
S with transition probability p. For all x, y ∈ S,

Px[T ky < +∞] = ρxyρ
k−1
yy .
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Proof: We argue by induction on k. For k = 1, the result holds by definition.
Assume the result holds for k ≥ 1 and let h(z0, z1, . . .) be 1 if zm = y for some
m ≥ 1. By the strong Markov property applied to T k−1y . Then on {T k−1y < +∞}

Px
[
T ky < +∞

∣∣∣FTk−1
y

]
= Ex

[
h(XTk−1

y
, XTk−1

y +1, . . .)
∣∣∣FTk−1

y

]
= φ(y),

where

φ(y) = Ey[h(X0, X1, . . .)] = Py[Ty < +∞].

As a consequence

Px[T ky < +∞] = Ex[1{T ky < +∞}; {T k−1y < +∞}]
= Ex[Py[Ty < +∞]; {T k−1y < +∞}]
= Py[Ty < +∞]Px[T k−1y < +∞]

= ρyy × ρxyρk−2yy ,

by induction, as desired.
We can now prove the theorems above.
Proof:(Proof of THM 21.23) If ρyy = 1, then by monotonicity

1 = ρkyy

= Py
[
T ky < +∞

]
↓ Py

⋂
k≥1
{T ky < +∞}

 .
Proof:(Proof of THM 21.24) By LEM 21.25,

Ex[N(y)] =
∑
k≥1

Px[N(y) ≥ k]

=
∑
k≥1

Px[T ky < +∞]

=
∑
k≥1

ρxyρ
k−1
yy

=
ρxy

1− ρyy
.

When ρyy < 1, the latter is < +∞.
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5 Class structure

Considerations about ρxy lead to a natural decomposition of the space, which in
turn helps identify recurrent states. We begin with a combinatorial interpretation
of the condition ρxy > 0. Recall the definition of pn from THM 21.15.

LEM 21.26 Let {Xn} be an MC on a countable set S with transition probability
p. Then, for distinct states x 6= y ∈ S, the following are equivalent:

(a) ρxy > 0

(b) pn(x, y) > 0 for some n ≥ 1

(c) ∃i0 = x, i1, . . . , in = y ∈ S such that p(ir−1, ir) > 0 for all r = 1, . . . , n

Proof: Note that, for x 6= 1 and n ≥ 1,

pn(x, y) ≤ Px[T+
y < +∞] =

∑
m≥1

Px[T+
y = m] ≤

∑
m≥1

pm(x, y),

shows that “(a) is equivalent to (b).” Moreover

pn(x, y) =
∑

i1,...,in−1

p(x, i1) p(i1, i2) · · · p(in−1, y),

shows that “(b) is equivalent to (c).”
Define

Tx = inf{n ≥ 0 : Xn = x}.

Note that the infimum above starts at n = 0, unlike that in T+
x . In particular,

Tx = T+
x when started at y 6= x. If Px[Ty < +∞] > 0, we write x→ y. If x→ y

and y → x, we write x↔ y and say that x communicates with y.

DEF 21.27 (Irreducibility) A subset C ⊆ S is irreducible if for all x, y ∈ C, we
have x↔ y. An MC on S is irreducible if the full space S is irreducible.

Clearly x ↔ x (since Px[Tx < +∞] = 1) and x ↔ y implies y ↔ x (by defini-
tion). Moreover, it follows from LEM 21.26 that x→ y and y → z implies x→ z.
In particular, the relation↔ is also transitive. As a result, it is an equivalence rela-
tion and its equivalence classes define a partition of S. (Recall that the equivalence
class of x is [x] = {y : x↔ y}.)

DEF 21.28 (Communicating classes) The equivalence classes of the relation↔
are called communicating classes.
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Hence the communicating classes are also the maximal irreducible sets.
The following fact implies that recurrence is a property of a communicating

class (i.e. a so-called class property).

LEM 21.29 (Recurrence is contagious) If x is recurrent and ρxy > 0, then y is
recurrent and ρyx = 1.

Proof: Since ρxy > 0, LEM 21.26 says that ∃i0 = x, i1, . . . , iK = y ∈ S such
that p(ir−1, ir) > 0 for all r = 1, . . . ,K. Take the smallest K such that this is
the case. Observe that necessarily i1, . . . , iK−1 6= x (since otherwise we could
have gotten a shorter sequence by starting at the last time x appears in this list—a
contradiction). By the Markov property, it is “obvious” that

Px[T+
x = +∞] ≥ (1− ρyx)

K∏
r=1

p(ir−1, ir),

since the product on the RHS is the probability of following the path i0, . . . , iK
(which does not visit x after time 0) and from there the probability of not visiting
x is 1 − ρyx. (Formally, let h(z0, z1, . . .) be 1 if zk 6= x for all k ≥ 1 and 0
otherwise. Let also φ(z) = Ez[h(X0, X1, . . .)] = Pz[T+

x = +∞]. Then, by the
Markov property,

Px[T+
x = +∞]

≥ Px[X1 = i1, . . . , XK−1 = iK−1, XK = y, T+
x = +∞]

= Ex[h(XK , XK+1, . . .); {X1 = i1, . . . , XK−1 = iK−1, XK = y}]
= Ex[φ(y); {X1 = i1, . . . , XK−1 = iK−1, XK = y}]
= Py[T+

x = +∞]Px[X1 = i1, . . . , XK−1 = iK−1, XK = y]

= (1− ρyx)

K∏
r=1

p(ir−1, ir),

where we used that {X1 = i1, . . . , XK−1 = iK−1, XK = y} ∈ FK .) The latter
would be > 0 if ρyx < 1, a contradiction. This proves that ρyx = 1.

In addition, the lemma tells us that ρyx = 1 implies that pL(y, x) > 0 for some
L ≥ 0. Applying Chapman-Kolmogorov (twice),∑

n≥1
pL+n+K(y, y) ≥

∑
n≥1

pL(y, x)pn(x, x)pK(x, y) = +∞,

by (3), which also proves that y is recurrent. That concludes the proof.
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THM 21.30 If {Xn} is an MC on a countable set S and C ⊆ S is irreducible,
then either all states in C are recurrent or all are transient.

Proof: Follows from LEM 21.29.
One still needs to determine whether a class is recurrent. The following gives

a useful criterion. First, a definition:

DEF 21.31 A subset C ⊆ S is closed of for all x ∈ C and y /∈ C, it holds that
ρxy = 0.

In other words, a subset C is closed if {Xn} cannot “get out of it.” Note that, by
LEM 21.26, ρxy = 0 implies pn(x, y) = 0 for all n ≥ 1.

THM 21.32 If {Xn} is an MC on a countable set S and C ⊆ S is recurrent
communicating class, then C is closed.

Proof: By LEM 21.29, if x ∈ C and y /∈ C but ρxy > 0, then it would hold that
ρyx = 1, a contradiction to the fact that C is a communicating class.

EX 21.33 (Branching processes: recurrence) Let {Xn} be a branching process
with offspring distribution {qi}i≥0. Assume that q0 > 0. That implies that ρk0 ≥
qk0 > 0 for all k > 0, as there is a positive probability that no children is produced
in any generation. On the other hand, ρ0k = 0 for all k > 0, as 0 is a so-called
absorbing state, i.e., p(0, 0) = 1. As a result 0 is a recurrent communicating class.
On the other hand, all other states are transient. Indeed, for each k > 0, by the
above, the communicating class of k is not closed.

Things are simpler in the finite case.

THM 21.34 Let {Xn} be an MC on a countable set S. If C ⊆ S is finite and
closed, then it contains a recurrent state.

Proof: We argue by contradiction. Suppose all y ∈ C are transient. Then by
THM 21.24, for any x ∈ C

+∞ >
∑
y∈C

Ex[N(y)] =
∑
y∈C

∑
n≥1

pn(x, y) =
∑
n≥1

∑
y∈C

pn(x, y) =
∑
n≥1

1,

by the closedness ofC (and the facts, encountered previously, that
∑

y∈S p
n(x, y) =

1 and pn(x, y) = 0 for all y /∈ C). That is a contradiction.

THM 21.35 (Decomposition theorem) If {Xn} is an MC on a finite set S, then
all closed communicating classes are recurrent. All other communicating classes
are transient.

Proof: Follows from THM 21.30, 21.32 and 21.34.

EX 21.36 (A seven-state chain) See [Dur10, Example 6.4.1].
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