
Notes 22 : Markov chains: stationary measures

Math 733-734: Theory of Probability Lecturer: Sebastien Roch

References: [Dur10, Sections 6.5] and [Nor98, Sections 1.7].
Recall:

DEF 22.1 (Markov chain) Let (S,S) be a measurable space. A function p : S ×
S → R is said to be a transition kernel if:

1. For each x ∈ S, A→ p(x,A) is a probability measure on (S,S).

2. For each A ∈ S , x→ p(x,A) is a measurable function.

We say that {Xn}n≥0 is a Markov chain (MC) with transition kernel p if

P[Xn+1 ∈ B | Fn] = p(Xn, B) ∀B ∈ S. (1)

We refer to the law of X0 as the initial distribution.

EX 22.2 (Countable-space MCs) Let S be countable with S = 2S , let µ be a
probability measure on S, and let p : S × S → [0, 1] such that∑

j∈S
p(i, j) = 1, ∀i ∈ S.

That is, for each i, p(i, ·) is a probability distribution on S. We extend the notation
to sets as follows: p(x,B) =

∑
j∈B p(x, j) (which is measurable as a function of

x since its values are discrete). Previously, we showed how to construct an MC on
S whose transition kernel is p.

THM 22.3 (Strong Markov property) Let {Xn} be an MC on S with transition
kernel p. Let T be a stopping time. For each n ≥ 0, let hn be a bounded measur-
able function from SZ+ to R. Then, on {T < +∞},

Eµ[hT (XT , XT+1, . . .) | FT ] = φT (XT ),

where φn(x) = Ex[hn(Xn, Xn+1, . . .)].
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THM 22.4 (Distribution at time n) Let {Xn} be an MC on a countable set S
with transition probability p. Then for all n ≥ 0 and j ∈ S

Pµ[Xn = j] =
∑
i∈S

µ(i)pn(i, j),

where pn is the n-th matrix power of p, i.e.,

pn(i, j) =
∑

k1,...,kn−1

p(i, k1) p(k1, k2) · · · p(kn−1, j).

Let {Xn} be an MC on a countable set S with transition probability p. For
x, y ∈ S, let T+

x = inf{n > 0 : Xn = x}, ρxy = Px[T+
y < +∞], and N(x) =∑

n≥1 1{Xn = x}.

LEM 22.5 Let {Xn} be an MC on a countable set S with transition probability p.
Then, for distinct states x 6= y ∈ S, the following are equivalent:

(a) ρxy > 0

(b) pn(x, y) > 0 for some n ≥ 1

(c) ∃i0 = x, i1, . . . , in = y ∈ S such that p(ir−1, ir) > 0 for all r = 1, . . . , n

DEF 22.6 (Recurrence) A state x ∈ S is recurrent if ρxx = 1. Otherwise it is
transient.

THM 22.7 Let {Xn} be an MC on a countable set S with transition probability p.
If y is recurrent then Py[Xn = y i.o.] = 1.

THM 22.8 Let {Xn} be an MC on a countable set S with transition probability p.
If y is transient then, for any x, Ex[N(y)] < +∞.

Define

Tx = inf{n ≥ 0 : Xn = x}.

If Px[Ty < +∞] > 0, we write x→ y. If x→ y and y → x, we write x↔ y and
say that x communicates with y.

DEF 22.9 (Irreducibility) A subset C ⊆ S is irreducible if for all x, y ∈ C, we
have x↔ y. An MC on S is irreducible if the full space S is irreducible.

LEM 22.10 (Recurrence is contagious) If x is recurrent and ρxy > 0, then y is
recurrent and ρyx = 1.

THM 22.11 If {Xn} is an MC on a countable set S and C ⊆ S is irreducible,
then either all states in C are recurrent or all are transient.
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1 Stationary measures

Throughout we assume that S is countable.
The notion of stationary measure provides a more quantitative picture of the

limit behavior of an MC. We first define it and discuss issues of existence and
uniqueness. The connection to asymptotics is developed in the next section.

1.1 Definition

First the main definition:

DEF 22.12 (Stationary measure) Let {Xn} be an MC on a countable set S with
transition probability p. A measure µ on S is stationary if∑

i∈S
µ(i) p(i, j) = µ(j).

If in addition µ is a probability measure, then we say that µ is a stationary distri-
bution.

The following observation explains the name.

LEM 22.13 If µ is a stationary distribution, then for all n ≥ 0

Pµ[Xn = j] = µ(j).

Proof: By THM 22.4,

Pµ[Xn = j] =
∑
i∈S

µ(i)pn(i, j)

=
∑
i∈S

µ(i)
∑

k1,...,kn−1

p(i, k1) p(k1, k2) · · · p(kn−1, j)

=
∑

k1,...,kn−1

∑
i∈S

µ(i)p(i, k1) p(k1, k2) · · · p(kn−1, j)

=
∑

k1,...,kn−1

µ(k1) p(k1, k2) · · · p(kn−1, j),

and the result follows by repeated application of the definition of stationarity.

EX 22.14 (Branching processes) Let {Xn} be a branching process with offspring
distribution {qi}i≥0. Then µ(i) = 1{i = 0} is a stationary distribution. Indeed,

+∞∑
i=0

1{i = 0} p(i, j) = p(0, j) = 1{j = 0},

as 0 is an absorbing state.
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EX 22.15 (Biased RW) Recall that biased simple RW on Z with parameter 1/2 <
q < 1 is the process {Sn}n≥0 with S0 = 0 and Sn =

∑
k≤nXk where the Xks

are iid in {−1,+1} s.t. P[X1 = 1] = q. Let r = 1− q. This process is an MC on
S = Z with transition probability

p(i, j) =


q, if j = i+ 1

r, if j = i− 1

0, o.w.

Then

µ(i) =
(q
r

)i
,

is a stationary measure. Indeed,∑
i∈Z

(q
r

)i
p(i, j) = q

(q
r

)j−1
+ r

(q
r

)j+1
= (r + q)×

(q
r

)j
=
(q
r

)j
,

as claimed. Note, however, that µ is not a stationary distribution; in fact,∑
i∈S

µ(i) = +∞,

so it cannot be “normalized” into one.

EX 22.16 (Not every chain has a stationary measure) Let {qi}i≥1 with ri = 1−
qi such that ∑

i≥1
ri < 1.

Let {Xn} be an MC on S = Z+ with p(0, 1) = q0 = 1 and, for i ≥ 1,

p(i, i+ 1) = qi and p(i, 0) = ri.

If µ were a non-zero stationary measure it would satisfy

µ(0) =
∑
j≥1

µ(j) rj

µ(i) = µ(i− 1) qi−1, ∀i ≥ 1.

By induction on i,

µ(i) = µ(0)
∏

1≤j≤i−1
qj , (2)
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and plugging back above gives

µ(0) = µ(0)

∑
j≥1

(1− qj)
∏

1≤k≤j−1
qk

 .

If qj = 1 for all j ≥ 1 for instance, then the above reads µ(0) = 0 and µ(i) =
µ(0) = 0 for all i ≥ 1. Hence, there is no stationary measure. More generally, if
0 < µ(0) < +∞

µ(0) ≤ µ(0)
∑
j≥1

(1− qj) < µ(0),

a contradiction. On the other hand, if µ(0) = 0, then µ(i) = 0 for all i by (2).

1.2 Existence

Our main existence result follows. For x, y ∈ S, let

γx(y) = Ex

T+
x −1∑
n=0

1{Xn = y}

 =

+∞∑
n=0

Px
[
Xn = y, n ≤ T+

x − 1
]
, (3)

that is, γx(y) is the expected number of visits to y before the first return to x, when
started at (and including) x. Necessarily γx(x) = 1. Note also that in general
γx(y) could be 0 or +∞.

THM 22.17 (Existence of stationary measure) Let {Xn} be an MC on a count-
able set S with transition probability p. Let x be recurrent. Then γx is a station-
ary measure. In addition: ρxy = 0 implies γx(y) = 0; while ρxy > 0 implies
0 < γx(y) < +∞.

On the other hand, when all states are transient, EX 22.15 and 22.16 show that a
(non-zero) stationary measure may or may not exist.
Proof:(of THM 22.17) We use what is called the cycle trick. Since T+

x < +∞
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a.s. and X0 = XT+
x
= x, we can “shift” the summation in (3) by one to get

γx(y) = Ex

 T+
x∑

n=1

1{Xn = y}


= Ex

[
+∞∑
n=1

1{Xn = y, n ≤ T+
x }

]

=
+∞∑
n=1

Px
[
Xn = y, n ≤ T+

x

]
=

+∞∑
n=1

∑
z∈S

Px
[
Xn−1 = z,Xn = y, n ≤ T+

x

]
.

Note that Xn−1 = z, n ≤ T+
x ∈ Fn−1 and Ez[1{X1 = x}] = p(z, x). Hence, by

the Markov property at time n− 1,

Px
[
Xn−1 = z,Xn = y, n ≤ T+

x

]
= Ex[1{Xn = x}; {Xn−1 = z, n ≤ T+

x ∈ Fn−1}]
= p(z, x)Px

[
Xn−1 = z, n ≤ T+

x

]
.

Plugging this back above and changing the order of summation gives

γx(y) =
∑
z∈S

p(z, y)
+∞∑
n=1

Px
[
Xn−1 = z, n ≤ T+

x

]
=
∑
z∈S

p(z, y)
+∞∑
m=0

Px
[
Xm = z,m ≤ T+

x − 1
]

=
∑
z∈S

p(z, y) γx(z).

For the second statement, note that ρxy = 0 implies by LEM 22.5 that pn(x, y) =
0 for all n ≥ 0, so that

γx(y) =

+∞∑
n=0

Px
[
Xn = y, n ≤ T+

x − 1
]
≤

+∞∑
n=0

pn(x, y) = 0.

On the other hand, by LEM 22.10, ρxy > 0 implies that ρyx > 0 which in turn
implies by LEM 22.5 that there areK andL such that pK(x, y) > 0 and pL(y, x) >
0. Moreover, by induction, for all n ≥ 0

γx(w) =
∑
z∈S

γx(z) p
n(z, w).
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Hence,

γx(y) ≥ γx(x) pK(x, y) > 0

and

1 = γx(x) ≥ γx(y) pL(y, x),

so that γx(y) ≤ 1/pL(y, x) < +∞. That concludes the proof.

1.3 Uniqueness

In general, even if a stationary measure exists, it may not be unique. Observe first
that the stationary measure condition is linear. Hence:

LEM 22.18 If µ1 and µ2 are stationary measures, so is ν = αµ1 + βµ2 for any
α, β such that ν is non-negative (and not identically zero).

In particular, any (positive) constant multiple of a stationary measure is a stationary
measure. But this is not the only source of non-uniqueness in general, as the next
examples show.

EX 22.19 (Biased RW: continued) Going back to EX 22.15, we claim that ν(i) =
1 for all i is also a stationary measure (distinct from the measure µ defined there
and not a constant multiple of it). Indeed,∑

i∈Z
ν(i) p(i, j) = 1× p(j − 1, j) + 1× p(j + 1, j) = q + r = 1 = ν(j),

as claimed.

EX 22.20 (A seven-state chain) Going back to [Dur10, Example 6.4.1], for each
recurrent communicating class, it is straightforward to construct a stationary dis-
tribution supported exclusively on it (by solving the linear system).

The latter example hints at a more general theory, which we will not develop here.
In the irreducible, recurrent case, our main uniqueness result is the following.

Recall the definition of γx from (3).

THM 22.21 (Uniqueness of stationary measure) Let {Xn} be an MC on a count-
able set S. If µ is a stationary measure with µ(x) = 1 for some x ∈ S, then µ ≥ γx.
If moreover the chain is irreducible and recurrent, then µ = γx.
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Proof: Let y ∈ S. To relate µ(y) to γx(y), we repeatedly apply the condition
satisfied by a stationary measure and “pull out” the terms in the sum defining γx(y).
Note that

µ(y) =
∑
z0∈S

µ(z0) p(z0, y)

= p(x, y) +
∑
z0 6=x

µ(z0) p(z0, y)

= Px[X1 = y, T+
x ≥ 2] +

∑
z0 6=x

µ(z0) p(z0, y),

where on the second line we used µ(x) = 1. Continuing on,

∑
z0 6=x

µ(z0) p(z0, y) =
∑
z0 6=x

∑
z1∈S

µ(z1) p(z1, z0)

 p(z0, y)

=
∑
z0 6=x

p(x, z0) p(z0, y) +
∑

z0,z1 6=x
µ(z1) p(z1, z0) p(z0, y)

= Px[X2 = y, T+
x ≥ 3] +

∑
z0,z1 6=x

µ(z1) p(z1, z0) p(z0, y).

Inductively, we get that

µ(y) ≥
n∑

m=1

Px[Xn = y, T+
x ≥ n+ 1] ↑ γx(y),

as n tends to +∞ by definition of γx. That proves the first statement.
Now, assume in addition that the chain is irreducible and recurrent. Because

γx is then stationary by THM 22.17, the first statement and LEM 22.18 imply that
ν = µ−γx ≥ 0 is also stationary. We have further ν(x) = 0 by assumption. Since
{Xn} is irreducible, for any y ∈ S there is K > 0 such that pK(y, x) > 0. But
that implies (by the proof of LEM 22.13)

0 = ν(x)

=
∑
z∈S

ν(z) pK(z, x)

≥ ν(y) pK(y, x)

≥ 0,

which is only possible if ν(y) = 0, that is, µ(y) = γx(y). This is true for every
y ∈ S and that concludes the proof.
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1.4 Stationary distributions and positive recurrence

So far, we have focused on the existence and uniqueness of a stationary measure.
Here we address these questions for stationary distributions. A clean theory arises
in this case. Let {Xn} be a MC on a countable set S. For a fixed recurrent x ∈ S,
in order for γx to be “normalizable” into a stationary distribution, it suffices that
Ex[T+

x ] < +∞. Indeed, by Fubini,

∑
z∈S

γx(z) =
∑
z∈S

Ex

T+
x −1∑
n=0

1{Xn = z}


= Ex

T+
x −1∑
n=0

∑
z∈S

1{Xn = z}


= Ex[T+

x ] < +∞, (4)

and γx/Ex[T+
x ] is a stationary distribution (as it is stationary and sums to 1).

DEF 22.22 (Positive recurrence) A recurrent state x ∈ S is positive recurrent if
Ex[T+

x ] < +∞. Otherwise it is null recurrent.

THM 22.23 Let {Xn} be an irreducible MC on a countable set S. Then the fol-
lowing statements are equivalent:

(i) every state is positive recurrent;

(ii) some state is positive recurrent;

(iii) there exists a stationary distribution.

Moreover, when any of the conditions above holds, the unique stationary distribu-
tion is given by

π(x) =
1

Ex[T+
x ]
.

Note that irreducibility is important here: in general the existence of a stationary
distribution does not imply that all states are positive recurrent; in fact some can
be transient (see EX 22.20). We can alternatively restrict the chain to a closed,
irreducible set.
Proof:(of THM 22.23) Note that (i) trivially implies (ii). If (ii) holds, then (iii)
holds by THM 22.17 and (4).
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If (iii) holds, let π be a stationary distribution. Since π sums to 1, there is at
least one z ∈ S such that π(z) > 0. In fact, let y 6= z be any other state in S; by
irreducibility, there is K such that pK(z, y) > 0 and LEM 22.13 implies that

π(y) =
∑
w∈S

π(w) pK(w, y) ≥ π(z) pK(z, y) > 0.

Hence π is strictly positive on S. Now fix x ∈ S and let µ(w) = π(w)/π(x) for
all w ∈ S. Note that µ(x) = 1 and that µ is a stationary measure. By THM 22.21,
µ ≥ γx. Hence

Ex[T+
x ] =

∑
w∈S

γx(w) ≤
∑
w∈S

π(w)

π(x)
=

1

π(x)
< +∞. (5)

Hence x is positive recurrent. Since x was arbitrary, we have proved that (iii)
implies (i). Moreover, we have shown that the chain is recurrent and therefore
µ = γx by THM 22.21. So the inequality in (5) is in fact an equality. That proves
the last statement.
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