Math 733-734: Theory of Probability Lecturer: Sebastien Roch

References: [Dur10, Sections 6.6] and [Nor98, Sections 1.8]. Recall:

THM 23.1 (Strong Markov property) *Let* $\{X_n\}$ *be an MC on S with transition kernel* p. Let T be a stopping time. For each $n \geq 0$, let h_n be a bounded measur*able function from* $S^{\mathbb{Z}_+}$ *to* \mathbb{R} *. Then, on* $\{T < +\infty\}$ *,*

$$
\mathbb{E}_{\mu}[h_T(X_T, X_{T+1}, \ldots) | \mathcal{F}_T] = \phi_T(X_T),
$$

where $\phi_n(x) = \mathbb{E}_x[h_n(X_n, X_{n+1}, \ldots)].$

THM 23.2 (Distribution at time *n*) Let $\{X_n\}$ be an MC on a countable set S *with transition probability* p. Then for all $n \geq 0$ and $j \in S$

$$
\mathbb{P}_{\mu}[X_n = j] = \sum_{i \in S} \mu(i) p^n(i, j),
$$

where p n *is the* n*-th matrix power of* p*, i.e.,*

$$
p^{n}(i,j) = \sum_{k_1,\ldots,k_{n-1}} p(i,k_1) p(k_1,k_2) \cdots p(k_{n-1},j).
$$

Let $\{X_n\}$ be an MC on a countable set S with transition probability p. For $x, y \in S$, let $T_x^+ = \inf\{n > 0 : X_n = x\}$, $\rho_{xy} = \mathbb{P}_x[T_y^+ < +\infty]$, and $N(x) =$ $\sum_{n\geq 1} \mathbb{1}\{X_n = x\}$. Define $T_x = \inf\{n \geq 0 : X_n = x\} = T_x^+ \mathbb{1}\{X_0 = x\}$. If $\mathbb{P}_x[\overline{T}_y < +\infty] > 0$, we write $x \to y$. If $x \to y$ and $y \to x$, we write $x \leftrightarrow y$ and say that x *communicates with* y.

LEM 23.3 *Let* $\{X_n\}$ *be an MC on a countable set S with transition probability p. Then, for distinct states* $x \neq y \in S$ *, the following are equivalent:*

- *(a)* $\rho_{xy} > 0$
- (*b*) $p^{n}(x, y) > 0$ *for some* $n \geq 1$
- *(c)* ∃ $i_0 = x, i_1, \ldots, i_n = y \in S$ *such that* $p(i_{r-1}, i_r) > 0$ *for all* $r = 1, \ldots, n$

DEF 23.4 (Recurrence) *A state* $x \in S$ *is* recurrent *if* $\rho_{xx} = 1$ *. Otherwise it is* transient*.*

LEM 23.5 (Recurrence is contagious) *If* x *is recurrent and* $\rho_{xy} > 0$ *, then* y *is recurrent and* $\rho_{yx} = 1$ *.*

DEF 23.6 (Irreducibility) *A subset* $C \subseteq S$ *is* irreducible *if for all* $x, y \in C$ *, we have* $x \leftrightarrow y$ *. An MC on S is irreducible if the full space S is irreducible.*

DEF 23.7 (Stationary measure) Let $\{X_n\}$ be an MC on a countable set S with *transition probability* p. A measure μ on S is stationary if

$$
\sum_{i \in S} \mu(i) p(i, j) = \mu(j).
$$

If in addition μ *is a probability measure, then we say that* μ *is a stationary distri*bution*.*

For $x, y \in S$, let

$$
\gamma_x(y) = \mathbb{E}_x \left[\sum_{n=0}^{T_x^+ - 1} \mathbb{1} \{ X_n = y \} \right] = \sum_{n=0}^{+\infty} \mathbb{P}_x \left[X_n = y, n \le T_x^+ - 1 \right]. \tag{1}
$$

THM 23.8 (Existence of stationary measure) Let $\{X_n\}$ be an MC on a count*able set S* with transition probability p. Let x be recurrent. Then γ_x is a station*ary measure. In addition:* $\rho_{xy} = 0$ *implies* $\gamma_x(y) = 0$ *; while* $\rho_{xy} > 0$ *implies* $0 < \gamma_x(y) < +\infty$.

DEF 23.9 (Positive recurrence) *A recurrent state* $x \in S$ *is* positive recurrent *if* $\mathbb{E}_x[T_x^+] < +\infty$. *Otherwise it is* null recurrent.

THM 23.10 Let $\{X_n\}$ be an irreducible MC on a countable set S. Then the fol*lowing statements are equivalent:*

- *(i) every state is positive recurrent;*
- *(ii) some state is positive recurrent;*
- *(iii) there exists a stationary distribution.*

Moreover, when any of the conditions above holds, the unique stationary distribution is given by $\pi(x) = \frac{1}{\mathbb{E}_x[T_x^+]}$.

We will also need:

THM 23.11 (Strong law of large numbers) Let X_1, X_2, \ldots be IID with $\mathbb{E}|X_1|$ < $+\infty$ *. Let* $S_n = \sum_{k \leq n} X_k$ and $\mu = \mathbb{E}[X_1]$ *. Then*

$$
\frac{S_n}{n} \to \mu, \quad a.s.
$$

THM 23.12 (SLLN: Infinite mean case) Let X_1, X_2, \ldots be IID with $\mathbb{E}[X_1^+] =$ $+\infty$ and $\mathbb{E}[X_1^-] < +\infty$ *. Then*

$$
\frac{S_n}{n} \to +\infty, \quad a.s.
$$

1 Convergence to equilibrium

Throughout, we assume that S is countable. We also restrict ourselves to the irreducible, positive recurrent case, where a unique stationary distribution is known to exist by the theorems above. (Observe that we have already proved that, when y is transient, then $\mathbb{E}_x[N(y)] = \sum_{n\geq 0} p^n(x, y) < +\infty$ so that $p^n(x, y) \to 0$.)

Even when a stationary distribution π exists, there is no guarantee in general that $p^{n}(x, y) \rightarrow \pi(y)$. For instance:

EX 23.13 (Periodic behavior) *Let* $S = \{1, 2\}$ *and*

$$
P = \begin{pmatrix} p(1,1) & p(1,2) \\ p(2,1) & p(2,2) \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.
$$

Note that P^2 *is the identity I and, as a result, that* $P^m = P$ *for odd* m *and* $P^m = I$ *for even* m*. Because, by THM 23.2,*

$$
P^m = \begin{pmatrix} p^m(1,1) & p^m(1,2) \\ p^m(2,1) & p^m(2,2) \end{pmatrix},
$$

we have established that $p^{m}(1,1)$ does not converge as $m \rightarrow +\infty$. This despite *the fact that a stationary distribution exists, as can be checked from noting that* $\pi P = \pi$ where $\pi = (1/2, 1/2)$ *(as a row vector).*

To exclude the effect seen in the previous example, we introduce a definition (for a more through treatment of periodicity, see [Dur10, Chapter 6]).

DEF 23.14 (Aperiodicity) *An MC* $\{X_n\}$ *on a countable set S with transition probability p is* aperiodic *if, for all* $x \in S$ *, we have* $p^{n}(x, x) > 0$ *for all n large enough.*

LEM 23.15 (Criterion for aperiodicity) *For an irreducible chain* $\{X_n\}$ *to be aperiodic, it suffices that there exists a state* $x \in S$ *and an integer* K *such that* $p^{K}(x,x) > 0$ and $p^{K+1}(x,x) > 0$. In particular, this is immediate if $p(x,x) > 0$ *for some* x*.*

Proof: Let x as in the statement. By irreducibility, for any $y \neq x$, there are L and M such that $p^{L}(y, x) > 0$, $p^{M}(x, y) > 0$ and hence

$$
p^{L+n+M}(y,y) \ge p^{L}(y,x)p^{n}(x,x)p^{M}(x,y)
$$

and it suffices to show that $p^{n}(x, x) > 0$ for *n* sufficiently large.

We also need the following simple observations: for m, m' such that $p^m(x, x) >$ 0 and $p^{m'}(x, x) > 0$, we have also $p^{km}(x, x) \ge (p^m(x, x))^k > 0$ and $p^{m+m'}(x, x) \ge$ $p^{m}(x, x)p^{m'}(x, x) > 0.$

Now take any $n \geq K^2$ and write $n - K^2 = mK + r$ where $0 \leq r < K$. Then

$$
n = K^2 + mK + r = r(K+1) + (K + m - r)K,
$$

so $p^{n}(x, x) > 0$ by the observations above.

The second claim also follows from the observations above. Our main convergence result is:

THM 23.16 (Convergence to equilibirum) Let $\{X_n\}$ be an MC on countable set S *with transition probability* p*. Assume it is irreducible, aperiodic and has stationary distribution* π *. Then for all* $x, z \in S$

$$
p^n(x, z) \to \pi(z),
$$

 $as n \rightarrow +\infty$ *.*

The proof is based on a technique called coupling. Before giving the proof, we begin with some background.

1.1 Coupling

A formal definition of coupling follows. Recall that for measurable spaces (S_1, S_1) (S_2, S_2) , we can consider the product space $(S_1 \times S_2, S_1 \times S_2)$ where

$$
S_1 \times S_2 := \{(s_1, s_2) : s_1 \in S_1, s_2 \in S_2\}
$$

is the Cartesian product of S_1 and S_2 , and $S_1 \times S_2$ is the smallest σ -field $S_1 \times S_2$ containing the rectangles $A_1 \times A_2$ for all $A_1 \in S_1$ and $A_2 \in S_2$.

 \blacksquare

DEF 23.17 (Coupling) Let μ and ν be probability measures on the same measur*able space* (S, \mathcal{S}) *. A coupling of* μ *and* ν *is a probability measure* γ *on the product space* $(S \times S, S \times S)$ *such that the marginals of* γ *coincide with* μ *and* ν *, i.e.,*

$$
\gamma(A \times S) = \mu(A)
$$
 and $\gamma(S \times A) = \nu(A)$, $\forall A \in S$.

Here is an example.

EX 23.18 (Coupling of Bernoulli variables) *Let* X *and* Y *be Bernoulli random variables with parameters* $0 \le q < r \le 1$ *respectively. That is,* $\mathbb{P}[X = 0] = 1 - q$ and $\mathbb{P}[X = 1] = q$, and similarly for Y. Here $S = \{0, 1\}$ and $\mathcal{S} = 2^S$.

- (Independent coupling) One coupling of X and Y is (X', Y') where $X' \stackrel{\rm d}{=} X$ *and* $Y' \stackrel{\text{d}}{=} Y$ *are* independent. Its law is

$$
\left(\mathbb{P}[(X', Y') = (i, j)]\right)_{i, j \in \{0, 1\}} = \begin{pmatrix} (1 - q)(1 - r) & (1 - q)r \\ q(1 - r) & qr \end{pmatrix}.
$$

- (Monotone coupling) Another possibility is to pick U *uniformly at random in* [0, 1]*, and set* $X'' = \mathbb{1}_{\{U \leq q\}}$ *and* $Y'' = \mathbb{1}_{\{U \leq r\}}$ *. The law of coupling* (X'', Y'') *is Then* (X'', Y'') *is a coupling of* X *and* Y *with law*

$$
\left(\mathbb{P}[(X'', Y'') = (i, j)]\right)_{i, j \in \{0, 1\}} = \begin{pmatrix} 1 - r & r - q \\ 0 & q \end{pmatrix}.
$$

One use of coupling is to quantify the "distance" between two measures. Let μ and ν be probability measures on (S, \mathcal{S}) . The total variation distance between them is

$$
\|\mu - \nu\|_{\text{TV}} := \sup_{A \in \mathcal{S}} |\mu(A) - \nu(A)|.
$$

LEM 23.19 (Coupling inequality) Let μ and ν be probability measures on (S, \mathcal{S}) . *For any coupling* γ *of* μ *and* ν *,*

$$
\|\mu - \nu\|_{\mathrm{TV}} \le \mathbb{P}[X \ne Y],
$$

where $(X, Y) \sim \gamma$ *.*

Proof: For any $A \in \mathcal{S}$,

$$
\mu(A) - \nu(A) = \mathbb{P}[X \in A] - \mathbb{P}[Y \in A]
$$

= $\mathbb{P}[X \in A, X = Y] + \mathbb{P}[X \in A, X \neq Y]$

$$
- \mathbb{P}[Y \in A, X = Y] - \mathbb{P}[Y \in A, X \neq Y]
$$

= $\mathbb{P}[X \in A, X \neq Y] - \mathbb{P}[Y \in A, X \neq Y]$
 $\leq \mathbb{P}[X \neq Y],$

and, similarly, $\nu(A) - \mu(A) \leq \mathbb{P}[X \neq Y]$. Hence

$$
|\mu(A) - \nu(A)| \le \mathbb{P}[X \ne Y].
$$

A *coupling of Markov chains* with transition probability p is a Markov chain $\{(X_n, Y_n)\}\$ on $S \times S$ such that both $\{X_n\}$ and $\{Y_n\}$ are Markov chains with transition probability p . For our purposes, the following special type of coupling will suffice.

DEF 23.20 (Markovian coupling) *A* Markovian coupling *of a transition probability* p *is a Markov chain* $\{(X_n, Y_n)\}\$ *on* $S \times S$ *with transition probability* q *satisfying:*

- (Markovian coupling) *For all* $x, y, x', y' \in S$,

$$
\sum_{z'} q((x, y), (x', z')) = p(x, x'),
$$

$$
\sum_{z'} q((x, y), (z', y')) = p(y, y').
$$

We say that a Markovian coupling is coalescing *if further:*

- (Coalescing) *For all* $z \in S$,

$$
x' \neq y' \implies q((z, z), (x', y')) = 0.
$$

Note that not every coupling of Markov chains is itself Markovian.

Let $\{(X_n, Y_n)\}\$ be a coalescing Markovian coupling of p. By the coalescing condition, if $X_m = Y_m$ then $X_n = Y_n$ for all $n \geq m$. That is, once $\{X_n\}$ and $\{Y_n\}$ meet, they remain equal. Let τ_{meet} be the *coalescence time* (also called coupling time), i.e.,

$$
\tau_{\text{meet}} = \inf \{ n \ge 0 \, : \, X_n = Y_n \}.
$$

By the coupling inequality, for any distributions μ_x and μ_y ,

$$
\left\| \sum_{z \in S} \mu_x(z) p^n(z, \cdot) - \sum_{z \in S} \mu_y(z) p^n(z, \cdot) \right\|_{\text{TV}} \leq \mathbb{P}_{\mu_x \times \mu_y}[X_n \neq Y_n]
$$

= $\mathbb{P}_{\mu_x \times \mu_y}[\tau_{\text{meet}} > n],$ (2)

where \times indicates the product measure.

1.2 Proof of convergence theorem

We are now ready to go back to THM 23.16.

Proof:(of THM 23.16) By definition of the total variation distance, it suffices to prove that

$$
||p^{n}(x,\cdot)-\pi(\cdot)||_{\text{TV}} \to 0.
$$

By the definition of stationarity, this is equivalent to

$$
\left\| p^{n}(x,\cdot) - \sum_{z \in S} \pi(z) p^{n}(z,\cdot) \right\|_{\text{TV}} \to 0. \tag{3}
$$

We use the coupling inequality. Let $\{(X_n, Y_n)\}\)$ be a coalescing Markovian coupling of p with transition probability q defined as:

$$
q((x, y), (x', y')) = \begin{cases} p(x, x') p(y, y') & \text{if } x \neq y, \\ p(x, x') & \text{if } x = y \text{ and } x' = y', \\ 0 & \text{o.w.} \end{cases}
$$

In words, $\{X_n\}$ and $\{Y_n\}$ are independent with transition probability p until they meet, at which point they remain equal from then on. Assume that $X_0 = x$ and that $Y_0 \sim \pi$, that is, the initial distribution of $\{(X_n, Y_n)\}\$ is $\delta_x \times \pi$ (where δ_x is the unit mass at x). By (2), to show (3), it then suffices to show

$$
\mathbb{P}_{\delta_x \times \pi}[\tau_{\text{meet}} > n] \to 0. \tag{4}
$$

This is implied by $\mathbb{P}_{\delta_x \times \pi}[\tau_{\text{meet}} < +\infty] = 1$, for which it suffices in turn to prove

$$
\mathbb{P}_{(x,y)}[\tau_{\text{meet}} < +\infty] = 1, \qquad \forall y,
$$
\n(5)

since

$$
\mathbb{P}_{\delta_x \times \pi}[\tau_{\text{meet}} < +\infty] = \sum_{y \in S} \pi(y) \, \mathbb{P}_{(x,y)}[\tau_{\text{meet}} < +\infty].
$$

It remains to prove the claim:

CLAIM 23.21 (Coupling in finite time) *For any* x, y , $\mathbb{P}_{(x,y)}[\tau_{\text{meet}} < +\infty] = 1$.

Proof: We consider a second Markovian coupling (this time not coalescing). Let ${Y_n'}$ be an independent copy of ${Y_n}$ started at y and let

$$
\tau'_{\text{meet}} = \inf \{ n \ge 0 \, : \, X_n = Y'_n \}.
$$

By construction τ_{meet} and τ'_{meet} are identically distributed, hence $\mathbb{P}_{(x,y)}[\tau_{\text{meet}}]$ $+\infty$] = $\mathbb{P}_{(x,y)}[\tau'_{\text{meet}} < +\infty]$. Fix a state $a \in S$ and let

$$
\tau'_a = \inf\{n \ge 0 \,:\, X_n = Y'_n = a\}.
$$

Observe that $\tau'_{\text{meet}} \leq \tau'_{a}$, hence $\mathbb{P}_{(x,y)}[\tau'_{\text{meet}} < +\infty] \geq \mathbb{P}_{(x,y)}[\tau'_{a} < +\infty]$. As a result of the previous two observations, it suffices to show

$$
\mathbb{P}_{(x,y)}[\tau_a' < +\infty] = 1. \tag{6}
$$

This follows immediately from LEM 23.5 and the next lemma (where we really only need irreducibility and recurrence in the conclusion).

LEM 23.22 Let $\{(X_n, Y'_n)\}$ be a Markovian coupling of p where $\{X_n\}$ and $\{Y'_n\}$ *are independent. Assume* p *is irreducible, aperiodic and positive recurrent. Then* $\{(X_n, Y'_n)\}\$ is irreducible, aperiodic and positive recurrent.

Proof: Let r be the transition probability of $\{(X_n, Y'_n)\}.$

1. $\{(X_n, Y'_n)\}$ is irreducible and aperiodic. By irreducibility, for all $x_1, x_2, y_1, y_2,$ there is K and L such that $p^{K}(x_1, x_2) > 0$ and $p^{L}(y_1, y_2) > 0$. By aperiodicity, we also have $p^{n}(x_2, x_2) > 0$ and $p^{n}(y_2, y_2) > 0$ for all $n \ge n_0$ for some n_0 . Hence, for all $n \geq n_0$, by Chapman-Kolmogorov

$$
r^{K+L+n}((x_1, y_1), (x_2, y_2))
$$

= $p^{K+L+n}(x_1, x_2) p^{K+L+n}(y_1, y_2)$
 $\geq p^{K}(x_1, x_2) p^{L+n}(x_2, x_2) p^{L}(y_1, y_2) p^{K+n}(y_2, y_2)$
> 0.

One such n suffices to establish irreducibility. Moreover, since we can take $x_1 = x_2$ and $y_1 = y_2$ (and $K = L = 0$), we also have aperiodicity.

2. $\{(X_n, Y'_n)\}\$ is positive recurrent. The probability measure $\pi \times \pi$ is stationary for r. Indeed, note

$$
\sum_{x_1, y_1} \pi(x_1) \pi(y_1) r((x_1, y_1), (x_2, y_2))
$$

=
$$
\sum_{x_1, y_1} \pi(x_1) \pi(y_1) p(x_1, x_2) p(y_1, y_2)
$$

=
$$
\sum_{x_1} \pi(x_1) p(x_1, x_2) \sum_{y_1} \pi(y_1) p(y_1, y_2)
$$

=
$$
\pi(x_2) \pi(y_2).
$$

By THM 23.10, $\{(X_n, Y'_n)\}\$ is therefore positive recurrent.

That concludes the proof of the lemma.

$$
x\in\mathbb{R}^{n\times n}
$$

П

2 Law of large numbers for MCs

Our second asymptotic result is a law of large numbers for countable MCs. This time, we do not need aperiodicity.

THM 23.23 (Law of large numbers for MCs) Let $\{X_n\}$ be an MC on a count*able set* S *with transition probability* p*. Assume it is irreducible and has stationary* distribution π *. Let* $f : S \to \mathbb{R}$ *be a function such that* $\sum_{z \in S} |f(z)|\pi(z) < +\infty$ *. Then for any initial distribution* µ*, we have*

$$
\frac{1}{n}\sum_{m=1}^{n}f(X_n)\to \sum_{z\in S}f(z)\pi(z),
$$

almost surely as $n \to +\infty$ *.*

We first prove the result in the special case where $f(x) = \mathbb{1}\{x = y\}$, in which case the sum on the LHS above counts the frequency of visits to y and the limit on the RHS is simply $\pi(y)$. The proof relies on the strong Markov property to break up the sample path into i.i.d. excursions from y back to it. That reduces the problem to an application of the standard Strong Law of Large Numbers.

2.1 Excursions

Recall that, for $y \in S$, we let $T_y^0 = 0$ and, for $k \ge 1$, we let

$$
T_y^k = \inf\{n > T_y^{k-1} : X_n = y\},\
$$

be the time of the *k*-th return to y. For $k \geq 1$, we also let $\Delta_y^k = T_y^k - T_y^{k-1}$ be the k-th inter-visit time.

LEM 23.24 Assume that y is recurrent. Under the initial distribution δ_{ν} , the vec*tors (of random length)*

$$
V^k := \left(\Delta_y^k, X_{T_y^{k-1}}, \dots, X_{T_y^k - 1}\right), \qquad k \ge 1,
$$

are i.i.d.

Proof: By recurrence of y, we have $T_y^k < +\infty$ almost surely for all $k \ge 0$. Hence the vectors V^k have finite length a.s. Because each component of V^k is in a countable set, the set of all possible values V^k can take is then itself countable. Let us denote this set by V. Fix $v \in V$. We use the strong Markov property with $h_n(X_0, X_1, \ldots) = h(X_0, X_1, \ldots) := \mathbb{1}\{V^1 = v\}$ for all n. Then

$$
\phi_n(y) = \phi(y) := \mathbb{E}_y[h(X_0, X_1, \ldots)] = \mathbb{P}_y[V^1 = v].
$$

And THM 23.1 implies that, for all $k \geq 1$, on $\{T_y^{k-1} < +\infty\}$,

$$
\mathbb{P}_y[V^k = v \,|\, \mathcal{F}_{T_y^{k-1}}] = \mathbb{E}_y[h(X_{T_y^{k-1}}, X_{T_y^{k-1}+1}, \ldots) \,|\, \mathcal{F}_{T_y^{k-1}}] \\
= \mathbb{P}_y[V^1 = v],
$$

almost surely, where we used that $X_{T^{k-1}_y} = y$ by definition. Since this is true for every $v \in V$, that implies that V^k is independent of $\mathcal{F}_{T^{k-1}_y}$ and therefore of V^1, \ldots, V^{k-1} . It also implies that the laws of the V^k 's are identical. Using the strong Markov property again, we get the following generalization:

THM 23.25 (Excursions) *Assume that* y *is recurrent. Under any initial distribu*tion μ such that $\mathbb{P}_{\mu}[T_y^1 < +\infty] > 0$, conditioned on the event $\{T_y^1 < +\infty\}$, the *vectors*

$$
V^k := \left(\Delta_y^k, X_{T_y^{k-1}}, \dots, X_{T_y^k - 1}\right), \qquad k \ge 2,
$$

are i.i.d.

2.2 Asymptotic frequencies

We are now ready to prove the law of large numbers in the special case where $f(x) = \mathbb{1}\{x = y\}.$ Let

$$
N_n(y) = \sum_{m=1}^n \mathbb{1}\{X_m = y\},\,
$$

be the number of visits to y by time n (not counting time 0). Again, we first consider the case where $\mu = \delta_y$.

LEM 23.26 Assume that y is recurrent. Under the initial distribution δ_y ,

$$
\frac{N_n(y)}{n} \to \frac{1}{\mathbb{E}_y[T_y^+]},
$$

almost surely as $n \rightarrow +\infty$ *.*

Recall that when a stationary distribution π exists and is unique, then $\pi(y)$ = $\frac{1}{\mathbb{E}_y[T_y^+]}$.

Proof:(of LEM 23.26) Writing, for $k \ge 1$,

$$
T_y^k = \sum_{\ell=1}^k \Delta_y^{\ell},
$$

as a sum of i.i.d. RVs by LEM 23.24, the strong law of large numbers (THM 23.11 and 23.12) then implies that

$$
\frac{T_y^n}{n} \to \mathbb{E}_y[T_y^1],\tag{7}
$$

almost surely as $n \to +\infty$. This is not quite what we want. To relate T_y^k and $N_n(y)$ we note that by definition

$$
T_y^{N_n(y)}\leq n< T_y^{N_n(y)+1},
$$

and we use the sandwiching inequalities

$$
\frac{T_y^{N_n(y)}}{N_n(y)} \le \frac{n}{N_n(y)} < \frac{T_y^{N_n(y)+1}}{N_n(y)+1} \frac{N_n(y)+1}{N_n(y)}.
$$

By the recurrence of y, we have $N_n(y) \to +\infty$ through the non-negative integers as $n \to +\infty$, almost surely. By (7), we get

$$
\frac{n}{N_n(y)} \to \mathbb{E}_y[T_y^1],
$$

almost surely as $n \to +\infty$. Taking inverses concludes the proof. Using THM 23.25 (and noting that on $\{T_y^+<+\infty\}$ we have $T_y^+/n \to 0$ a.s.), we get the following generalization:

THM 23.27 (Asymptotic frequencies) *Assume that* y *is recurrent. Under any initial distribution* µ*,*

$$
\frac{N_n(y)}{n} \to \frac{1}{\mathbb{E}_y[T_y^+]} 1\{T_y^+ < +\infty\},\,
$$

almost surely as $n \rightarrow +\infty$ *.*

2.3 Proof of law of large numbers for MCs

Proof:(of THM 23.23) Fix $y \in S$. Recall the definition of γ_y from (1). Let

$$
W_f^k := \sum_{m=T_y^{k-1}}^{T_y^k - 1} f(X_m).
$$

Because W_f^k is a function of V^k , THM 23.25 along with irreducibility and recurrence implies:

LEM 23.28 *Under any initial distribution* μ , the RVs $\{W_f^k, k \geq 2\}$ are i.i.d. *Moreover* $\mathbb{E}_{\mu} |W_f^k| < +\infty$.

Proof: To prove the second claim, we note that

$$
\mathbb{E}_{\mu}|W_f^k| \leq \mathbb{E}_{\mu}[W_{|f|}^k].
$$

For $v = (\delta, x_0, \ldots, x_{\delta-1}) \in \mathcal{V}$, define

$$
|F|(v) := \sum_{m=0}^{\delta - 1} |f(x_m)|.
$$

THM 23.25 also implies that

$$
\mathbb{E}_{\mu}[W_{|f}^{k}] = \sum_{v = (\delta, x_0, ..., x_{\delta - 1}) \in \mathcal{V}} \mathbb{P}_{y}[V^{1} = v] |F|(v).
$$

Using γ_y , THM 23.8 and 23.10, we can re-write this as

$$
\sum_{v=(\delta,x_0,\ldots,x_{\delta-1})\in V} \mathbb{P}_y[V^1=v] |F|(v)
$$
\n
$$
= \sum_{v=(\delta,x_0,\ldots,x_{\delta-1})\in V} \mathbb{P}_y[V^1=v] \sum_{z\in S} |f(z)| \sum_{m=0}^{\delta-1} \mathbb{1}\{x_m = z\}
$$
\n
$$
= \sum_{z\in S} |f(z)| \sum_{v=(\delta,x_0,\ldots,x_{\delta-1})\in V} \mathbb{P}_y[V^1=v] \sum_{m=0}^{\delta-1} \mathbb{1}\{x_m = z\}
$$
\n
$$
= \sum_{z\in S} |f(z)| \gamma_y(z)
$$
\n
$$
= \mathbb{E}_y[T_y^+] \sum_{z\in S} |f(z)| \pi(z) < +\infty,
$$

by assumption.

Hence, by the strong law of large numbers (and repeating the calculation in the proof of the lemma above with f rather $|f|$), we have almost surely (once n is large

 \blacksquare

enough that $N_n(y) \geq 2$

$$
\frac{1}{N_n(y) - 1} \sum_{m=1}^{T_y^{N_n(y)} - 1} f(X_m)
$$
\n
$$
= \frac{1}{N_n(y) - 1} \sum_{m=1}^{T_y^{1} - 1} f(X_m) + \frac{1}{N_n(y) - 1} \sum_{m=T_y^{1}}^{T_y^{N_n(y)} - 1} f(X_m)
$$
\n
$$
\to \mathbb{E}_y[T_y^+] \sum_{z \in S} f(z) \pi(z),
$$

as $n \to +\infty$, where we used that the first term on the second line converges to 0. By THM 23.27, we then get:

LEM 23.29 *We have*

$$
\frac{1}{n} \sum_{m=1}^{T_y^{N_n(y)}-1} f(X_m) \to \sum_{z \in S} f(z) \pi(z),
$$

almost surely, as $n \rightarrow +\infty$ *.*

This is still not what we want because the sum above stops at $m = T_y^{N_n(y)} - 1$. To argue that we can go all the way to n without affecting the limit, we appeal to the following technical observation.

LEM 23.30 *Let* Y_1, Y_2, \ldots *be i.i.d.* RVs such that $\mathbb{E}[Y_1^+] < +\infty$. Then

$$
\frac{1}{n} \max_{1 \le i \le n} Y_i \to 0,
$$

almost surely.

Proof: For any $\varepsilon > 0$, by the integrability assumption

$$
\sum_{n\geq 1} \mathbb{P}[Y_n^+ > \varepsilon n] < +\infty,
$$

so by BC1 there is N (random) large enough so that $Y_m^+ \leq \varepsilon m$ for all $m \geq N$. Hence for $n \geq N$

$$
\frac{1}{n} \max_{1 \le i \le n} Y_i \le \left(\frac{1}{n} \max_{1 \le m \le N} Y_m\right) \vee \left(\max_{N+1 \le m \le n} \frac{\varepsilon m}{n}\right)
$$
\n
$$
\le \left(\frac{1}{n} \max_{1 \le i \le N} Y_i\right) \vee \varepsilon
$$
\n
$$
\to \varepsilon,
$$

as $n \to +\infty$, almost surely. Since $\varepsilon > 0$ is arbitrary, we have shown that

$$
\limsup_{n} \frac{1}{n} \max_{1 \le i \le n} Y_i \le 0,
$$

almost surely. On the other hand,

$$
\liminf_{n} \frac{1}{n} \max_{1 \le i \le n} Y_i \ge \liminf_{n} \frac{1}{n} Y_1 = 0,
$$

with probability one.

We then note that, since $N_n(y) \leq n$,

$$
\left|\frac{1}{n}\sum_{m=1}^{T_y^{N_n(y)}-1}f(X_m)-\frac{1}{n}\sum_{m=1}^n f(X_m)\right|\leq \frac{1}{n}\max_{2\leq k\leq n+1}W_{|f|}^k,
$$

which tends to 0 almost surely by LEM 23.30. (Note that we use a maximum over the first n excursion sums because the behavior of the "completed last excursion" before time n is in itself not straightforward to characterize.)

The proof is then concluded by LEM 23.29.

References

- [Dur10] Rick Durrett. *Probability: theory and examples*. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge, 2010.
- [Nor98] J. R. Norris. *Markov chains*, volume 2 of *Cambridge Series in Statistical and Probabilistic Mathematics*. Cambridge University Press, Cambridge, 1998. Reprint of 1997 original.

 \blacksquare

 \blacksquare