
Notes 23 : Markov chains: asymptotic behavior

Math 733-734: Theory of Probability Lecturer: Sebastien Roch

References: [Dur10, Sections 6.6] and [Nor98, Sections 1.8].
Recall:

THM 23.1 (Strong Markov property) Let {Xn} be an MC on S with transition
kernel p. Let T be a stopping time. For each n ≥ 0, let hn be a bounded measur-
able function from SZ+ to R. Then, on {T < +∞},

Eµ[hT (XT , XT+1, . . .) | FT ] = φT (XT ),

where φn(x) = Ex[hn(Xn, Xn+1, . . .)].

THM 23.2 (Distribution at time n) Let {Xn} be an MC on a countable set S
with transition probability p. Then for all n ≥ 0 and j ∈ S

Pµ[Xn = j] =
∑
i∈S

µ(i)pn(i, j),

where pn is the n-th matrix power of p, i.e.,

pn(i, j) =
∑

k1,...,kn−1

p(i, k1) p(k1, k2) · · · p(kn−1, j).

Let {Xn} be an MC on a countable set S with transition probability p. For
x, y ∈ S, let T+

x = inf{n > 0 : Xn = x}, ρxy = Px[T+
y < +∞], and N(x) =∑

n≥1 1{Xn = x}. Define Tx = inf{n ≥ 0 : Xn = x} = T+
x 1{X0 = x}. If

Px[Ty < +∞] > 0, we write x → y. If x → y and y → x, we write x ↔ y and
say that x communicates with y.

LEM 23.3 Let {Xn} be an MC on a countable set S with transition probability p.
Then, for distinct states x 6= y ∈ S, the following are equivalent:

(a) ρxy > 0

(b) pn(x, y) > 0 for some n ≥ 1

(c) ∃i0 = x, i1, . . . , in = y ∈ S such that p(ir−1, ir) > 0 for all r = 1, . . . , n
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DEF 23.4 (Recurrence) A state x ∈ S is recurrent if ρxx = 1. Otherwise it is
transient.

LEM 23.5 (Recurrence is contagious) If x is recurrent and ρxy > 0, then y is
recurrent and ρyx = 1.

DEF 23.6 (Irreducibility) A subset C ⊆ S is irreducible if for all x, y ∈ C, we
have x↔ y. An MC on S is irreducible if the full space S is irreducible.

DEF 23.7 (Stationary measure) Let {Xn} be an MC on a countable set S with
transition probability p. A measure µ on S is stationary if∑

i∈S
µ(i) p(i, j) = µ(j).

If in addition µ is a probability measure, then we say that µ is a stationary distri-
bution.

For x, y ∈ S, let

γx(y) = Ex

T+
x −1∑
n=0

1{Xn = y}

 =
+∞∑
n=0

Px
[
Xn = y, n ≤ T+

x − 1
]
. (1)

THM 23.8 (Existence of stationary measure) Let {Xn} be an MC on a count-
able set S with transition probability p. Let x be recurrent. Then γx is a station-
ary measure. In addition: ρxy = 0 implies γx(y) = 0; while ρxy > 0 implies
0 < γx(y) < +∞.

DEF 23.9 (Positive recurrence) A recurrent state x ∈ S is positive recurrent if
Ex[T+

x ] < +∞. Otherwise it is null recurrent.

THM 23.10 Let {Xn} be an irreducible MC on a countable set S. Then the fol-
lowing statements are equivalent:

(i) every state is positive recurrent;

(ii) some state is positive recurrent;

(iii) there exists a stationary distribution.

Moreover, when any of the conditions above holds, the unique stationary distribu-
tion is given by π(x) = 1

Ex[T+
x ]
.
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We will also need:

THM 23.11 (Strong law of large numbers) LetX1, X2, . . . be IID with E|X1| <
+∞. Let Sn =

∑
k≤nXk and µ = E[X1]. Then

Sn
n
→ µ, a.s.

THM 23.12 (SLLN: Infinite mean case) Let X1, X2, . . . be IID with E[X+
1 ] =

+∞ and E[X−1 ] < +∞. Then

Sn
n
→ +∞, a.s.

1 Convergence to equilibrium

Throughout, we assume that S is countable. We also restrict ourselves to the irre-
ducible, positive recurrent case, where a unique stationary distribution is known to
exist by the theorems above. (Observe that we have already proved that, when y is
transient, then Ex[N(y)] =

∑
n≥0 p

n(x, y) < +∞ so that pn(x, y)→ 0.)
Even when a stationary distribution π exists, there is no guarantee in general

that pn(x, y)→ π(y). For instance:

EX 23.13 (Periodic behavior) Let S = {1, 2} and

P =

(
p(1, 1) p(1, 2)
p(2, 1) p(2, 2)

)
=

(
0 1
1 0

)
.

Note that P 2 is the identity I and, as a result, that Pm = P for oddm and Pm = I
for even m. Because, by THM 23.2,

Pm =

(
pm(1, 1) pm(1, 2)
pm(2, 1) pm(2, 2)

)
,

we have established that pm(1, 1) does not converge as m → +∞. This despite
the fact that a stationary distribution exists, as can be checked from noting that
πP = π where π = (1/2, 1/2) (as a row vector).

To exclude the effect seen in the previous example, we introduce a definition (for a
more through treatment of periodicity, see [Dur10, Chapter 6]).

DEF 23.14 (Aperiodicity) An MC {Xn} on a countable set S with transition
probability p is aperiodic if, for all x ∈ S, we have pn(x, x) > 0 for all n large
enough.
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LEM 23.15 (Criterion for aperiodicity) For an irreducible chain {Xn} to be ape-
riodic, it suffices that there exists a state x ∈ S and an integer K such that
pK(x, x) > 0 and pK+1(x, x) > 0. In particular, this is immediate if p(x, x) > 0
for some x.

Proof: Let x as in the statement. By irreducibility, for any y 6= x, there are L and
M such that pL(y, x) > 0, pM (x, y) > 0 and hence

pL+n+M (y, y) ≥ pL(y, x)pn(x, x)pM (x, y)

and it suffices to show that pn(x, x) > 0 for n sufficiently large.
We also need the following simple observations: form,m′ such that pm(x, x) >

0 and pm
′
(x, x) > 0, we have also pkm(x, x) ≥ (pm(x, x))k > 0 and pm+m′(x, x) ≥

pm(x, x)pm
′
(x, x) > 0.

Now take any n ≥ K2 and write n−K2 = mK + r where 0 ≤ r < K. Then

n = K2 +mK + r = r(K + 1) + (K +m− r)K,

so pn(x, x) > 0 by the observations above.
The second claim also follows from the observations above.
Our main convergence result is:

THM 23.16 (Convergence to equilibirum) Let {Xn} be an MC on countable set
S with transition probability p. Assume it is irreducible, aperiodic and has station-
ary distribution π. Then for all x, z ∈ S

pn(x, z)→ π(z),

as n→ +∞.

The proof is based on a technique called coupling. Before giving the proof, we
begin with some background.

1.1 Coupling

A formal definition of coupling follows. Recall that for measurable spaces (S1,S1)
(S2,S2), we can consider the product space (S1 × S2,S1 × S2) where

S1 × S2 := {(s1, s2) : s1 ∈ S1, s2 ∈ S2}

is the Cartesian product of S1 and S2, and S1 × S2 is the smallest σ-field S1 × S2
containing the rectangles A1 ×A2 for all A1 ∈ S1 and A2 ∈ S2.
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DEF 23.17 (Coupling) Let µ and ν be probability measures on the same measur-
able space (S,S). A coupling of µ and ν is a probability measure γ on the product
space (S × S,S × S) such that the marginals of γ coincide with µ and ν, i.e.,

γ(A× S) = µ(A) and γ(S ×A) = ν(A), ∀A ∈ S.

Here is an example.

EX 23.18 (Coupling of Bernoulli variables) Let X and Y be Bernoulli random
variables with parameters 0 ≤ q < r ≤ 1 respectively. That is, P[X = 0] = 1− q
and P[X = 1] = q, and similarly for Y . Here S = {0, 1} and S = 2S .

- (Independent coupling) One coupling ofX and Y is (X ′, Y ′) whereX ′ d
= X

and Y ′ d
= Y are independent. Its law is(
P[(X ′, Y ′) = (i, j)]

)
i,j∈{0,1}

=

(
(1− q)(1− r) (1− q)r
q(1− r) qr

)
.

- (Monotone coupling) Another possibility is to pick U uniformly at random
in [0, 1], and set X ′′ = 1{U≤q} and Y ′′ = 1{U≤r}. The law of coupling
(X ′′, Y ′′) is Then (X ′′, Y ′′) is a coupling of X and Y with law(

P[(X ′′, Y ′′) = (i, j)]
)
i,j∈{0,1}

=

(
1− r r − q

0 q

)
.

One use of coupling is to quantify the “distance” between two measures. Let
µ and ν be probability measures on (S,S). The total variation distance between
them is

‖µ− ν‖TV := sup
A∈S
|µ(A)− ν(A)|.

LEM 23.19 (Coupling inequality) Let µ and ν be probability measures on (S,S).
For any coupling γ of µ and ν,

‖µ− ν‖TV ≤ P[X 6= Y ],

where (X,Y ) ∼ γ.

Proof: For any A ∈ S,

µ(A)− ν(A) = P[X ∈ A]− P[Y ∈ A]

= P[X ∈ A, X = Y ] + P[X ∈ A, X 6= Y ]

− P[Y ∈ A, X = Y ]− P[Y ∈ A, X 6= Y ]

= P[X ∈ A, X 6= Y ]− P[Y ∈ A, X 6= Y ]

≤ P[X 6= Y ],
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and, similarly, ν(A)− µ(A) ≤ P[X 6= Y ]. Hence

|µ(A)− ν(A)| ≤ P[X 6= Y ].

A coupling of Markov chains with transition probability p is a Markov chain
{(Xn, Yn)} on S × S such that both {Xn} and {Yn} are Markov chains with
transition probability p. For our purposes, the following special type of coupling
will suffice.

DEF 23.20 (Markovian coupling) A Markovian coupling of a transition proba-
bility p is a Markov chain {(Xn, Yn)} on S×S with transition probability q satis-
fying:

- (Markovian coupling) For all x, y, x′, y′ ∈ S,∑
z′

q((x, y), (x′, z′)) = p(x, x′),

∑
z′

q((x, y), (z′, y′)) = p(y, y′).

We say that a Markovian coupling is coalescing if further:

- (Coalescing) For all z ∈ S,

x′ 6= y′ =⇒ q((z, z), (x′, y′)) = 0.

Note that not every coupling of Markov chains is itself Markovian.
Let {(Xn, Yn)} be a coalescing Markovian coupling of p. By the coalescing

condition, ifXm = Ym thenXn = Yn for all n ≥ m. That is, once {Xn} and {Yn}
meet, they remain equal. Let τmeet be the coalescence time (also called coupling
time), i.e.,

τmeet = inf{n ≥ 0 : Xn = Yn}.

By the coupling inequality, for any distributions µx and µy,∥∥∥∥∥∑
z∈S

µx(z)pn(z, ·)−
∑
z∈S

µy(z)p
n(z, ·)

∥∥∥∥∥
TV

≤ Pµx×µy [Xn 6= Yn]

= Pµx×µy [τmeet > n], (2)

where × indicates the product measure.
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1.2 Proof of convergence theorem

We are now ready to go back to THM 23.16.
Proof:(of THM 23.16) By definition of the total variation distance, it suffices to
prove that

‖pn(x, ·)− π(·)‖TV → 0.

By the definition of stationarity, this is equivalent to∥∥∥∥∥pn(x, ·)−
∑
z∈S

π(z) pn(z, ·)

∥∥∥∥∥
TV

→ 0. (3)

We use the coupling inequality. Let {(Xn, Yn)} be a coalescing Markovian cou-
pling of p with transition probability q defined as:

q((x, y), (x′, y′)) =


p(x, x′) p(y, y′) if x 6= y,

p(x, x′) if x = y and x′ = y′,

0 o.w.

In words, {Xn} and {Yn} are independent with transition probability p until they
meet, at which point they remain equal from then on. Assume that X0 = x and
that Y0 ∼ π, that is, the initial distribution of {(Xn, Yn)} is δx×π (where δx is the
unit mass at x). By (2), to show (3), it then suffices to show

Pδx×π[τmeet > n]→ 0. (4)

This is implied by Pδx×π[τmeet < +∞] = 1, for which it suffices in turn to prove

P(x,y)[τmeet < +∞] = 1, ∀y, (5)

since

Pδx×π[τmeet < +∞] =
∑
y∈S

π(y)P(x,y)[τmeet < +∞].

It remains to prove the claim:

CLAIM 23.21 (Coupling in finite time) For any x, y, P(x,y)[τmeet < +∞] = 1.

Proof: We consider a second Markovian coupling (this time not coalescing). Let
{Y ′n} be an independent copy of {Yn} started at y and let

τ ′meet = inf{n ≥ 0 : Xn = Y ′n}.
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By construction τmeet and τ ′meet are identically distributed, hence P(x,y)[τmeet <
+∞] = P(x,y)[τ

′
meet < +∞]. Fix a state a ∈ S and let

τ ′a = inf{n ≥ 0 : Xn = Y ′n = a}.

Observe that τ ′meet ≤ τ ′a, hence P(x,y)[τ
′
meet < +∞] ≥ P(x,y)[τ

′
a < +∞]. As a

result of the previous two observations, it suffices to show

P(x,y)[τ
′
a < +∞] = 1. (6)

This follows immediately from LEM 23.5 and the next lemma (where we really
only need irreducibility and recurrence in the conclusion).

LEM 23.22 Let {(Xn, Y
′
n)} be a Markovian coupling of p where {Xn} and {Y ′n}

are independent. Assume p is irreducible, aperiodic and positive recurrent. Then
{(Xn, Y

′
n)} is irreducible, aperiodic and positive recurrent.

Proof: Let r be the transition probability of {(Xn, Y
′
n)}.

1. {(Xn, Y
′
n)} is irreducible and aperiodic. By irreducibility, for all x1, x2, y1, y2,

there is K and L such that pK(x1, x2) > 0 and pL(y1, y2) > 0. By aperi-
odicity, we also have pn(x2, x2) > 0 and pn(y2, y2) > 0 for all n ≥ n0 for
some n0. Hence, for all n ≥ n0, by Chapman-Kolmogorov

rK+L+n((x1, y1), (x2, y2))

= pK+L+n(x1, x2) p
K+L+n(y1, y2)

≥ pK(x1, x2) p
L+n(x2, x2) p

L(y1, y2) p
K+n(y2, y2)

> 0.

One such n suffices to establish irreducibility. Moreover, since we can take
x1 = x2 and y1 = y2 (and K = L = 0), we also have aperiodicity.

2. {(Xn, Y
′
n)} is positive recurrent. The probability measure π×π is station-

ary for r. Indeed, note∑
x1,y1

π(x1)π(y1) r((x1, y1), (x2, y2))

=
∑
x1,y1

π(x1)π(y1) p(x1, x2) p(y1, y2)

=
∑
x1

π(x1) p(x1, x2)
∑
y1

π(y1) p(y1, y2)

= π(x2)π(y2).

By THM 23.10, {(Xn, Y
′
n)} is therefore positive recurrent.

That concludes the proof of the lemma.
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2 Law of large numbers for MCs

Our second asymptotic result is a law of large numbers for countable MCs. This
time, we do not need aperiodicity.

THM 23.23 (Law of large numbers for MCs) Let {Xn} be an MC on a count-
able set S with transition probability p. Assume it is irreducible and has stationary
distribution π. Let f : S → R be a function such that

∑
z∈S |f(z)|π(z) < +∞.

Then for any initial distribution µ, we have

1

n

n∑
m=1

f(Xn)→
∑
z∈S

f(z)π(z),

almost surely as n→ +∞.

We first prove the result in the special case where f(x) = 1{x = y}, in which
case the sum on the LHS above counts the frequency of visits to y and the limit
on the RHS is simply π(y). The proof relies on the strong Markov property to
break up the sample path into i.i.d. excursions from y back to it. That reduces the
problem to an application of the standard Strong Law of Large Numbers.

2.1 Excursions

Recall that, for y ∈ S, we let T 0
y = 0 and, for k ≥ 1, we let

T ky = inf{n > T k−1y : Xn = y},

be the time of the k-th return to y. For k ≥ 1, we also let ∆k
y = T ky − T k−1y be the

k-th inter-visit time.

LEM 23.24 Assume that y is recurrent. Under the initial distribution δy, the vec-
tors (of random length)

V k :=
(

∆k
y , XTk−1

y
, . . . , XTky−1

)
, k ≥ 1,

are i.i.d.

Proof: By recurrence of y, we have T ky < +∞ almost surely for all k ≥ 0.
Hence the vectors V k have finite length a.s. Because each component of V k is in
a countable set, the set of all possible values V k can take is then itself countable.
Let us denote this set by V . Fix v ∈ V . We use the strong Markov property with
hn(X0, X1, . . .) = h(X0, X1, . . .) := 1{V 1 = v} for all n. Then

φn(y) = φ(y) := Ey[h(X0, X1, . . .)] = Py[V 1 = v].
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And THM 23.1 implies that, for all k ≥ 1, on {T k−1y < +∞},

Py[V k = v | FTk−1
y

] = Ey[h(XTk−1
y

, XTk−1
y +1, . . .) | FTk−1

y
]

= Py[V 1 = v],

almost surely, where we used that XTk−1
y

= y by definition. Since this is true

for every v ∈ V , that implies that V k is independent of FTk−1
y

and therefore of

V 1, . . . , V k−1. It also implies that the laws of the V k’s are identical.
Using the strong Markov property again, we get the following generalization:

THM 23.25 (Excursions) Assume that y is recurrent. Under any initial distribu-
tion µ such that Pµ[T 1

y < +∞] > 0, conditioned on the event {T 1
y < +∞}, the

vectors

V k :=
(

∆k
y , XTk−1

y
, . . . , XTky−1

)
, k ≥ 2,

are i.i.d.

2.2 Asymptotic frequencies

We are now ready to prove the law of large numbers in the special case where
f(x) = 1{x = y}. Let

Nn(y) =
n∑

m=1

1{Xm = y},

be the number of visits to y by time n (not counting time 0). Again, we first
consider the case where µ = δy.

LEM 23.26 Assume that y is recurrent. Under the initial distribution δy,

Nn(y)

n
→ 1

Ey[T+
y ]
,

almost surely as n→ +∞.

Recall that when a stationary distribution π exists and is unique, then π(y) =
1

Ey [T+
y ]

.
Proof:(of LEM 23.26) Writing, for k ≥ 1,

T ky =
k∑
`=1

∆`
y,
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as a sum of i.i.d. RVs by LEM 23.24, the strong law of large numbers (THM 23.11
and 23.12) then implies that

Tny
n
→ Ey[T 1

y ], (7)

almost surely as n → +∞. This is not quite what we want. To relate T ky and
Nn(y) we note that by definition

TNn(y)y ≤ n < TNn(y)+1
y ,

and we use the sandwiching inequalities

T
Nn(y)
y

Nn(y)
≤ n

Nn(y)
<

T
Nn(y)+1
y

Nn(y) + 1

Nn(y) + 1

Nn(y)
.

By the recurrence of y, we have Nn(y) → +∞ through the non-negative integers
as n→ +∞, almost surely. By (7), we get

n

Nn(y)
→ Ey[T 1

y ],

almost surely as n→ +∞. Taking inverses concludes the proof.
Using THM 23.25 (and noting that on {T+

y < +∞} we have T+
y /n→ 0 a.s.), we

get the following generalization:

THM 23.27 (Asymptotic frequencies) Assume that y is recurrent. Under any
initial distribution µ,

Nn(y)

n
→ 1

Ey[T+
y ]
1{T+

y < +∞},

almost surely as n→ +∞.

2.3 Proof of law of large numbers for MCs

Proof:(of THM 23.23) Fix y ∈ S. Recall the definition of γy from (1). Let

W k
f :=

Tky−1∑
m=Tk−1

y

f(Xm).

Because W k
f is a function of V k, THM 23.25 along with irreducibility and recur-

rence implies:
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LEM 23.28 Under any initial distribution µ, the RVs {W k
f , k ≥ 2} are i.i.d.

Moreover Eµ|W k
f | < +∞.

Proof: To prove the second claim, we note that

Eµ|W k
f | ≤ Eµ[W k

|f |].

For v = (δ, x0, . . . , xδ−1) ∈ V , define

|F |(v) :=

δ−1∑
m=0

|f(xm)|.

THM 23.25 also implies that

Eµ[W k
|f |] =

∑
v=(δ,x0,...,xδ−1)∈V

Py[V 1 = v] |F |(v).

Using γy, THM 23.8 and 23.10, we can re-write this as∑
v=(δ,x0,...,xδ−1)∈V

Py[V 1 = v] |F |(v)

=
∑

v=(δ,x0,...,xδ−1)∈V

Py[V 1 = v]
∑
z∈S
|f(z)|

δ−1∑
m=0

1{xm = z}

=
∑
z∈S
|f(z)|

∑
v=(δ,x0,...,xδ−1)∈V

Py[V 1 = v]
δ−1∑
m=0

1{xm = z}

=
∑
z∈S
|f(z)| γy(z)

= Ey[T+
y ]
∑
z∈S
|f(z)|π(z) < +∞,

by assumption.
Hence, by the strong law of large numbers (and repeating the calculation in the

proof of the lemma above with f rather |f |), we have almost surely (once n is large
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enough that Nn(y) ≥ 2)

1

Nn(y)− 1

T
Nn(y)
y −1∑
m=1

f(Xm)

=
1

Nn(y)− 1

T 1
y−1∑
m=1

f(Xm) +
1

Nn(y)− 1

T
Nn(y)
y −1∑
m=T 1

y

f(Xm)

→ Ey[T+
y ]
∑
z∈S

f(z)π(z),

as n → +∞, where we used that the first term on the second line converges to 0.
By THM 23.27, we then get:

LEM 23.29 We have

1

n

T
Nn(y)
y −1∑
m=1

f(Xm)→
∑
z∈S

f(z)π(z),

almost surely, as n→ +∞.

This is still not what we want because the sum above stops at m = T
Nn(y)
y −1.

To argue that we can go all the way to n without affecting the limit, we appeal to
the following technical observation.

LEM 23.30 Let Y1, Y2, . . . be i.i.d. RVs such that E[Y +
1 ] < +∞. Then

1

n
max
1≤i≤n

Yi → 0,

almost surely.

Proof: For any ε > 0, by the integrability assumption∑
n≥1

P[Y +
n > εn] < +∞,

so by BC1 there is N (random) large enough so that Y +
m ≤ εm for all m ≥ N .

Hence for n ≥ N
1

n
max
1≤i≤n

Yi ≤
(

1

n
max

1≤m≤N
Ym

)
∨
(

max
N+1≤m≤n

εm

n

)
≤
(

1

n
max
1≤i≤N

Yi

)
∨ ε

→ ε,
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as n→ +∞, almost surely. Since ε > 0 is arbitrary, we have shown that

lim sup
n

1

n
max
1≤i≤n

Yi ≤ 0,

almost surely. On the other hand,

lim inf
n

1

n
max
1≤i≤n

Yi ≥ lim inf
n

1

n
Y1 = 0,

with probability one.
We then note that, since Nn(y) ≤ n,∣∣∣∣∣∣∣

1

n

T
Nn(y)
y −1∑
m=1

f(Xm)− 1

n

n∑
m=1

f(Xm)

∣∣∣∣∣∣∣ ≤
1

n
max

2≤k≤n+1
W k
|f |,

which tends to 0 almost surely by LEM 23.30. (Note that we use a maximum over
the first n excursion sums because the behavior of the “completed last excursion”
before time n is in itself not straightforward to characterize.)

The proof is then concluded by LEM 23.29.
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