Notes 25 : Ergodic theory: a brief introduction

Math 733-734: Theory of Probability Lecturer: Sebastien Roch

References: [Dur10, Sections 7.1-4].

We give a very brief introduction to the ergodic theorem as well as the subadditive ergodic theorem. For more, see e.g. [Dur10, Chapter 7].

1 Stationary stochastic processes

The context for ergodic theory is stationary sequences, as defined next.

1.1 Definitions and main examples

We use the notation \sim to indicate identity in distribution.

DEF 25.1 (Stationary stochastic process) *A real-valued process* $\{X_n\}_{n\geq 0}$ *is stationary if for every* k, m

$$
(X_m,\ldots,X_{m+k})\sim (X_0,\ldots,X_k).
$$

EX 25.2 *IID sequences are stationary.*

EX 25.3 *Let* $\{X_n\}$ *be a MC on a countable set S with transition probability p and stationary distribution* $\pi > 0$ *. Then* $\{X_n\}$ *with initial distribution* π *is a stationary stochastic process. Indeed, by definition of* π *and induction*

$$
X_0 \sim X_n,
$$

for all $n \geq 0$ *. Moreover, for all* m, k *, by the Markov property*

$$
(X_0,\ldots,X_k)\sim (X_m,\ldots,X_{m+k}).
$$

1.2 Abstract setting

Ergodic theory is typically developed in a more abstract setting that encompasses the above.

EX 25.4 (A canonical example) *Let* $(\Omega, \mathcal{F}, \mathbb{P})$ *be a probability space. A map* T : $\Omega \to \Omega$ *is said to be measure-preserving (for* \mathbb{P} *) if for all* $A \in \mathcal{F}$,

$$
\mathbb{P}[\omega : T\omega \in A] = \mathbb{P}[T^{-1}A] = \mathbb{P}[A].
$$

If $X \in \mathcal{F}$ then $X_n(\omega) = X(T^n \omega)$, $n \geq 0$, defines a stationary sequence. Indeed, *for all* $B \in \mathcal{B}(\mathbb{R}^{k+1})$

$$
\mathbb{P}[(X_0,\ldots,X_k)(\omega) \in B] = \mathbb{P}[(X_0,\ldots,X_k)(T^m\omega) \in B]
$$

=
$$
\mathbb{P}[(X_m,\ldots,X_{m+k})(\omega) \in B].
$$

Kolmogorov's extension theorem indicates that all real-valued stationary stochastic processes can be realized in the framework of the previous example. Recall:

THM 25.5 (Kolmogorov Extension Theorem) *Suppose we are given probability measure* μ_n on $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n))$ *s.t.*

$$
\mu_{n+1}((a_0,b_0]\times\cdots\times(a_n,b_n]\times\mathbb{R})=\mu_n((a_0,b_0]\times\cdots\times(a_n,b_n]),
$$

for all n *and* $(n+1)$ *-dimensional rectangles. Then there exists a unique probability measure* $\mathbb P$ *on* $(\mathbb{R}^{\mathbb{Z}_+}, \mathcal{R}^{\mathbb{Z}_+})$ *with marginals* μ_n *.*

EX 25.6 (Revisiting stationary processes) Let \tilde{X} be a stationary process on \mathbb{R} . *Then by the previous theorem, we can realize* \tilde{X} *on* $\mathbb{R}^{\mathbb{Z}_+}$ *as*

$$
X_n(\omega) = \omega_n.
$$

The corresponding measure-preserving transformation is the shift

$$
T\omega=(\omega_1,\ldots).
$$

In particular, $X_n(\omega) = X_0(T^n\omega)$ *.*

2 Ergodic theorem

Before stating the ergodic theorem, we need a few more definitions. We are interested in the convergence of empirical averages:

$$
n^{-1}S_n(\omega) = n^{-1} \sum_{m=0}^{n-1} X_m(\omega) = n^{-1} \sum_{m=0}^{n-1} f(T^m \omega).
$$

2.1 Invariant sets

To get some intuition in the behavior of $n^{-1}S_n$ we look at a trivial example.

EX 25.7 *Let* $\Omega = \{a, b, c, d, e\}$ *and* $\mathcal{F} = 2^{\Omega}$ *. Take* $f = \mathbb{1}_A$ *for some set* $A \in \mathcal{F}$ *.*

1. Suppose $T = (a, b, c, d, e)$ *(i.e. the cyclic permutation that sends a to b etc.*). For T to be measure-preserving we require $\mathbb{P}[a] = \mathbb{P}[b] = \cdots$ so that $\mathbb{P}[a] = 1/5$ *is the only possibility. (It is easy to see that* T *is indeed measurepreserving because the number of elements of* Ω *is invariant under* T*.) In that case, it is immediate that*

$$
n^{-1}S_n \to \mathbb{P}[A] = \mathbb{E}[f].
$$

2. Suppose $T = (a, b, c)(d, e)$ *(i.e. the permutation with the two cycles listed). Let* $\Omega_1 = \{a, b, c\}$, $\mathcal{F}_1 = 2^{\Omega_1}$, $\Omega_2 = \{d, e\}$ *and* $\mathcal{F}_2 = 2^{\Omega_2}$ *. For* T *to be measure-preserving we need* $\mathbb{P}[a] = \mathbb{P}[b] = \mathbb{P}[c] = \alpha/3$ *and* $\mathbb{P}[d] =$ $\mathbb{P}[e] = \frac{\beta}{2}$ *. (Any choice of* α *,* β *with* $\alpha + \beta = 1$ *works because the number of elements of* Ω_1 *and* Ω_2 *is invariant under* T.) Take $A = \{a, d\}$. Then $n^{-1}S_n \to 1/3$ *with probability* α *(i.e. if* $\omega \in \Omega_1$ *) and* $n^{-1}S_n \to 1/2$ *with probability* β*. Denoting* ˆf *this limit, we note*

$$
\mathbb{E}[\hat{f}] = \mathbb{P}[A] = \mathbb{E}[f],
$$

but \hat{f} *is not constant if* $\alpha, \beta \neq 0$ *. However, it is completely determined by whether* $\omega \in \Omega_1$ *or* $\omega \in \Omega_2$ *.*

DEF 25.8 *A set* $A \in \mathcal{F}$ *is* invariant *if*

$$
(\{\omega : T\omega \in A\} =)T^{-1}A = A,
$$

up to a null set. It is nontrivial if $0 < \mathbb{P}[A] < 1$ *. The set of all invariant sets forms a* σ*-field* I *(see Exercise 7.1.1 in [Dur10]). The transformation* T *is said* ergodic *if* $\mathcal I$ *is trivial, that is, all invariant sets* A *have* $\mathbb P[A] \in \{0,1\}$ *.*

2.2 Statement of theorem

We finally state a version of the ergodic theorem without proof. (See [Dur10] for a proof.)

THM 25.9 (Ergodic theorem) Let $f \in \mathcal{L}^1$ and assume that the measure-preserving *map* T *is ergodic. Then*

$$
n^{-1}S_n \to \mathbb{E}[f],
$$

a.s and in \mathcal{L}^1 .

EX 25.10 Let $X_n(\omega) = \omega_n$ are IID rvs. If A is invariant then $\{\omega : \omega \in A\}$ $\{\omega : T\omega \in A\} \in \sigma(X_1, \ldots)$ and by induction

$$
A\in \cap_{n\geq 0}\sigma(X_n,\ldots)=\mathcal{T},
$$

where $\mathcal T$ *is the tail* σ -field. Thus $\mathcal I \subseteq \mathcal T$. Since $\mathcal T$ *is trivial by Kolmogorov's* 0-1 law, so is *I*. Therefore T is ergodic. Applying the ergodic theorem to $f = X_0 \in L^1$ *we get*

$$
n^{-1} \sum_{m=0}^{n-1} X_m(\omega) \to \mathbb{E}[X_0],
$$

that is, we recover the SLLN.

2.3 Back to MCs

Going back to Markov chains, recall:

DEF 25.11 *Let*

$$
T_i = \inf\{n \ge 1 \,:\, X_n = i\},\
$$

and

$$
f_{ij} = \mathbb{P}_i[T_j < +\infty].
$$

A chain is irreducible *if* $f_{ij} > 0$ *for all* $i, j \in A$ *. A state i is recurrent if* $f_{ii} = 1$ and is positive recurrent if $\mathbb{E}_i[T_i]<+\infty.$

THM 25.12 *If* X *is irreducible and finite, then every state is positive recurrent.*

THM 25.13 *Let* X *be an irreducible and positive recurrent MC. Then there exists a unique stationary distribution* π*. In fact,*

$$
\pi(i) = \frac{1}{\mathbb{E}_i[T_i]} > 0.
$$

EX 25.14 (MCs) *Let* $\{X_n\}$ *be a MC on S.*

• *ASRW on* [a, b]: Let $\{S_n\}_{n\geq 0}$ be an asymmetric simple random walk with *parameter* $1/2 < p < 1$ *. Let* $a < 0 < b$ *,* $N = T_a \wedge T_b$ *. Then* $\{X_n\}_{n \geq 0} =$ ${S_{N\wedge n}}_{n\geq 0}$ *is a Markov chain. In the ASRW on* [a, b], $\pi = \delta_a$ and $\pi = \delta_b$ as *well as all mixtures are stationary. The invariant sets are* {a} *and* {b} *and therefore* T *is not ergodic if* π *has positive mass on both of them.*

• *On the other hand, assume* X *is irreducible and positive recurrent with stationary distribution* $\pi > 0$ *. Let* $A \in \mathcal{I}$ *and note that* $\mathbb{1}_A \circ T^n = \mathbb{1}_A$ *. Then by the Markov property,*

$$
\mathbb{E}[\mathbb{1}_A \,|\, \mathcal{F}_n] = \mathbb{E}[\mathbb{1}_A \circ T^n \,|\, \mathcal{F}_n] = h(X_n),
$$

where $h(x) = \mathbb{E}_x[\mathbb{1}_A]$ *. By Lévy's* 0-1 *law the LHS* $\rightarrow \mathbb{1}_A$ *. By irreducibility and recurrence, any* $y \in S$ *is visited i.o. and we must have* $\mathbb{E}_x[\mathbb{1}_A] \equiv h(x) \equiv$ 0 or 1. Therefore $\mathbb{P}[A] \in \{0, 1\}$ and *I* is trivial. Then applying the Ergodic *Theorem to* $f(\omega) = g(X_0(\omega))$ *where*

$$
\sum_{y} |g(y)| \pi(y) < +\infty,
$$

we then have

$$
n^{-1} \sum_{m=0}^{n-1} g(X_m(\omega)) \to \sum_{y} \pi(y)g(y).
$$

3 Subadditive ergodic theorem

The ergodic theorem can also be extended to certain functionals that are not necessarily additive.

3.1 Subadditivity

Recall:

DEF 25.15 *A sequence* $\{\gamma_n\}_{n\geq 0}$ *is* subadditive *if for all m, n:*

$$
\gamma_{m+n} \leq \gamma_n + \gamma_m.
$$

THM 25.16 *If* γ *is subadditive then*

$$
\frac{\gamma_n}{n} \to \inf_m \frac{\gamma_m}{m}.
$$

Proof: Clearly

 \liminf_{n} γ_n $\frac{m}{n} \geq \inf_m$ γ_m $\frac{m}{m}$.

So STS

$$
\lim\sup_n\frac{\gamma_n}{n}\leq \inf_m\frac{\gamma_m}{m}
$$

.

Fix m and write $n = km + \ell$ with $0 \le \ell < m$. Applying the subadditivity repeatedly, we have

$$
\gamma_n \leq k\gamma_m + \gamma_\ell,
$$

so that

$$
\frac{\gamma_n}{n} \le \left(\frac{km}{km+\ell}\right) \frac{\gamma_m}{m} + \frac{\gamma_\ell}{n},
$$

and the result follows by taking $n \to +\infty$.

EX 25.17 (Longest common subsequence) Let $\{X_n\}$ and $\{Y_n\}$ be stationary se*quences and let* $L_{m,n}$ *be the longest common subsequence on indices* $m < k \leq n$ *. Clearly*

$$
L_{0,m}+L_{m,n}\leq L_{0,n},
$$

and $\gamma_n = -\mathbb{E}[L_{0,n}]$ *is subadditive.*

3.2 Statement of the theorem

The main theorem is the following.

THM 25.18 (Subadditive Ergodic Theorem) *Suppose* $\{X_{m,n}\}_{0 \leq m < n}$ *satisfy:*

- *1.* $X_{0,m} + X_{m,n} \geq X_{0,n}$.
- 2. $\{X_{nk,(n+1)k}, n \geq 1\}$ *is a stationary sequence for each k.*
- *3. The distribution of* $\{X_{m,m+k}, k \geq 1\}$ *does not depend on m.*
- 4. $\mathbb{E} X_{0,1}^+ < \infty$ and for each n, $\mathbb{E} X_{0,n} \geq \gamma_0 n$ where $\gamma_0 > -\infty$.

Then

- $\lim_{m \to \infty}$ lim $\mathbb{E} X_{0,m}/n = \inf_{m \to \infty} \mathbb{E} X_{0,m}/m \equiv \gamma$.
- $X = \lim_{n \to \infty} X_{0,n}/n$ *exists a.s. and in* L^1 *so* $\mathbb{E}X = \gamma$ *.*
- *If all stationary sequences in* 2. *are ergodic then* $X = \gamma a.s.$

Proof: See [Dur10].

П

3.3 Examples

The subadditive ergodic theorem is surprisingly useful.

EX 25.19 (Age-dependent continuous-time branching process) *Start with one individual. Each individual dies independently after time* T ∼ F *and at that point produces* $K \sim \{p_k\}_k$ *offsprings (both with finite means). Let* $X_{0,m}$ *be the time of birth of the first individual from generation* m *and* $X_{m,n}$ *, the time to the birth of the first descendant of that individual in generation* n*. We check the conditions:*

1. Clearly

$$
X_{0,m} + X_{m,n} \ge X_{0,n}.
$$

- 2. $\{X_{nk,(n+1)k}\}_n$ *is IID because we are looking at the descendants of a single individual (the first born) over* k *generations which are not overlapping.*
- *3. The distribution of* $\{X_{m,m+k}\}_k$ *is independent of m for the same reason.*
- *4. By nonnegativity and the finite mean of* F*, condition* 4. *is satisfied.*

So we can apply the thm. By the IID remark above in 2. *we get that the limit is trivial. See [Dur10] for a characterization of the limit.*

EX 25.20 (First-passage percolation) *Consider* \mathbb{Z}^d *as a graph with edges con-* $\textit{necting } x, y \in \mathbb{Z}^d \textit{ if } \| x - y \|_1 = 1.$ Assign to each edge a nonnegative random *variable* $\tau(e)$ *corresponding to the time it takes to traverse* e *(in either direction). Define* $t(x, y)$ *(the passage time)* as the minimum time to go from x to y. Let $X_{m,n} = t(mu, nu)$ where $u = (1, 0, \dots, 0)$. We check the conditions:

1. Clearly

$$
X_{0,m} + X_{m,n} \ge X_{0,n}
$$

- 2. $\{X_{nk,(n+1)k}\}_n$ *is stationary by translational symmetry.*
- *3. The distribution of* $\{X_{m,m+k}\}_k$ *is independent of m for the same reason.*
- *4. By nonnegativity and the finite mean of* τ *, condition* 4. *is satisfied.*

So we can apply the theorem. Enumerating the edges in some order, one can prove (check!) that the limit is tail-measurable and, by the IID assumption, is trivial. See [Dur10] for a characterization of the limit.

References

[Dur10] Rick Durrett. *Probability: theory and examples*. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge, 2010.