
Notes 25 : Ergodic theory: a brief introduction

Math 733-734: Theory of Probability Lecturer: Sebastien Roch

References: [Dur10, Sections 7.1-4].
We give a very brief introduction to the ergodic theorem as well as the subad-

ditive ergodic theorem. For more, see e.g. [Dur10, Chapter 7].

1 Stationary stochastic processes

The context for ergodic theory is stationary sequences, as defined next.

1.1 Definitions and main examples

We use the notation ∼ to indicate identity in distribution.

DEF 25.1 (Stationary stochastic process) A real-valued process {Xn}n≥0 is sta-
tionary if for every k,m

(Xm, . . . , Xm+k) ∼ (X0, . . . , Xk).

EX 25.2 IID sequences are stationary.

EX 25.3 Let {Xn} be a MC on a countable set S with transition probability p and
stationary distribution π > 0. Then {Xn} with initial distribution π is a stationary
stochastic process. Indeed, by definition of π and induction

X0 ∼ Xn,

for all n ≥ 0. Moreover, for all m, k, by the Markov property

(X0, . . . , Xk) ∼ (Xm, . . . , Xm+k).
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1.2 Abstract setting

Ergodic theory is typically developed in a more abstract setting that encompasses
the above.

EX 25.4 (A canonical example) Let (Ω,F ,P) be a probability space. A map T :
Ω→ Ω is said to be measure-preserving (for P) if for all A ∈ F ,

P[ω : Tω ∈ A] = P[T−1A] = P[A].

If X ∈ F then Xn(ω) = X(Tnω), n ≥ 0, defines a stationary sequence. Indeed,
for all B ∈ B(Rk+1)

P[(X0, . . . , Xk)(ω) ∈ B] = P[(X0, . . . , Xk)(Tmω) ∈ B]

= P[(Xm, . . . , Xm+k)(ω) ∈ B].

Kolmogorov’s extension theorem indicates that all real-valued stationary stochas-
tic processes can be realized in the framework of the previous example. Recall:

THM 25.5 (Kolmogorov Extension Theorem) Suppose we are given probability
measure µn on (Rn,B(Rn)) s.t.

µn+1((a0, b0]× · · · × (an, bn]× R) = µn((a0, b0]× · · · × (an, bn]),

for all n and (n+1)-dimensional rectangles. Then there exists a unique probability
measure P on (RZ+ ,RZ+) with marginals µn.

EX 25.6 (Revisiting stationary processes) Let X̃ be a stationary process on R.
Then by the previous theorem, we can realize X̃ on RZ+ as

Xn(ω) = ωn.

The corresponding measure-preserving transformation is the shift

Tω = (ω1, . . .).

In particular, Xn(ω) = X0(Tnω).

2 Ergodic theorem

Before stating the ergodic theorem, we need a few more definitions. We are inter-
ested in the convergence of empirical averages:

n−1Sn(ω) = n−1
n−1∑
m=0

Xm(ω) = n−1
n−1∑
m=0

f(Tmω).
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2.1 Invariant sets

To get some intuition in the behavior of n−1Sn we look at a trivial example.

EX 25.7 Let Ω = {a, b, c, d, e} and F = 2Ω. Take f = 1A for some set A ∈ F .

1. Suppose T = (a, b, c, d, e) (i.e. the cyclic permutation that sends a to b
etc.). For T to be measure-preserving we require P[a] = P[b] = · · · so that
P[a] = 1/5 is the only possibility. (It is easy to see that T is indeed measure-
preserving because the number of elements of Ω is invariant under T .) In
that case, it is immediate that

n−1Sn → P[A] = E[f ].

2. Suppose T = (a, b, c)(d, e) (i.e. the permutation with the two cycles listed).
Let Ω1 = {a, b, c}, F1 = 2Ω1 , Ω2 = {d, e} and F2 = 2Ω2 . For T to
be measure-preserving we need P[a] = P[b] = P[c] = α/3 and P[d] =
P[e] = β/2. (Any choice of α, β with α+ β = 1 works because the number
of elements of Ω1 and Ω2 is invariant under T .) Take A = {a, d}. Then
n−1Sn → 1/3 with probability α (i.e. if ω ∈ Ω1) and n−1Sn → 1/2 with
probability β. Denoting f̂ this limit, we note

E[f̂ ] = P[A] = E[f ],

but f̂ is not constant if α, β 6= 0. However, it is completely determined by
whether ω ∈ Ω1 or ω ∈ Ω2.

DEF 25.8 A set A ∈ F is invariant if

({ω : Tω ∈ A} =)T−1A = A,

up to a null set. It is nontrivial if 0 < P[A] < 1. The set of all invariant sets forms
a σ-field I (see Exercise 7.1.1 in [Dur10]). The transformation T is said ergodic
if I is trivial, that is, all invariant sets A have P[A] ∈ {0, 1}.

2.2 Statement of theorem

We finally state a version of the ergodic theorem without proof. (See [Dur10] for a
proof.)

THM 25.9 (Ergodic theorem) Let f ∈ L1 and assume that the measure-preserving
map T is ergodic. Then

n−1Sn → E[f ],

a.s and in L1.
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EX 25.10 Let Xn(ω) = ωn are IID rvs. If A is invariant then {ω : ω ∈ A} =
{ω : Tω ∈ A} ∈ σ(X1, . . .) and by induction

A ∈ ∩n≥0σ(Xn, . . .) = T ,

where T is the tail σ-field. Thus I ⊆ T . Since T is trivial by Kolmogorov’s 0-1
law, so is I. Therefore T is ergodic. Applying the ergodic theorem to f = X0 ∈ L1

we get

n−1
n−1∑
m=0

Xm(ω)→ E[X0],

that is, we recover the SLLN.

2.3 Back to MCs

Going back to Markov chains, recall:

DEF 25.11 Let
Ti = inf{n ≥ 1 : Xn = i},

and
fij = Pi[Tj < +∞].

A chain is irreducible if fij > 0 for all i, j ∈ A. A state i is recurrent if fii = 1
and is positive recurrent if Ei[Ti] < +∞.

THM 25.12 If X is irreducible and finite, then every state is positive recurrent.

THM 25.13 Let X be an irreducible and positive recurrent MC. Then there exists
a unique stationary distribution π. In fact,

π(i) =
1

Ei[Ti]
> 0.

EX 25.14 (MCs) Let {Xn} be a MC on S.

• ASRW on [a, b]: Let {Sn}n≥0 be an asymmetric simple random walk with
parameter 1/2 < p < 1. Let a < 0 < b, N = Ta ∧ Tb. Then {Xn}n≥0 =
{SN∧n}n≥0 is a Markov chain. In the ASRW on [a, b], π = δa and π = δb as
well as all mixtures are stationary. The invariant sets are {a} and {b} and
therefore T is not ergodic if π has positive mass on both of them.
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• On the other hand, assume X is irreducible and positive recurrent with sta-
tionary distribution π > 0. Let A ∈ I and note that 1A ◦ Tn = 1A. Then
by the Markov property,

E[1A | Fn] = E[1A ◦ Tn | Fn] = h(Xn),

where h(x) = Ex[1A]. By Lévy’s 0-1 law the LHS→ 1A. By irreducibility
and recurrence, any y ∈ S is visited i.o. and we must have Ex[1A] ≡ h(x) ≡
0 or 1. Therefore P[A] ∈ {0, 1} and I is trivial. Then applying the Ergodic
Theorem to f(ω) = g(X0(ω)) where∑

y

|g(y)|π(y) < +∞,

we then have

n−1
n−1∑
m=0

g(Xm(ω))→
∑
y

π(y)g(y).

3 Subadditive ergodic theorem

The ergodic theorem can also be extended to certain functionals that are not neces-
sarily additive.

3.1 Subadditivity

Recall:

DEF 25.15 A sequence {γn}n≥0 is subadditive if for all m,n:

γm+n ≤ γn + γm.

THM 25.16 If γ is subadditive then

γn
n
→ inf

m

γm
m
.

Proof: Clearly
lim inf

n

γn
n
≥ inf

m

γm
m
.

So STS
lim sup

n

γn
n
≤ inf

m

γm
m
.
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Fix m and write n = km + ` with 0 ≤ ` < m. Applying the subadditivity
repeatedly, we have

γn ≤ kγm + γ`,

so that
γn
n
≤
(

km

km+ `

)
γm
m

+
γ`
n
,

and the result follows by taking n→ +∞.

EX 25.17 (Longest common subsequence) Let {Xn} and {Yn} be stationary se-
quences and let Lm,n be the longest common subsequence on indices m < k ≤ n.
Clearly

L0,m + Lm,n ≤ L0,n,

and γn = −E[L0,n] is subadditive.

3.2 Statement of the theorem

The main theorem is the following.

THM 25.18 (Subadditive Ergodic Theorem) Suppose {Xm,n}0≤m<n satisfy:

1. X0,m +Xm,n ≥ X0,n.

2. {Xnk,(n+1)k, n ≥ 1} is a stationary sequence for each k.

3. The distribution of {Xm,m+k, k ≥ 1} does not depend on m.

4. EX+
0,1 <∞ and for each n, EX0,n ≥ γ0n where γ0 > −∞.

Then

• limEX0,n/n = infm EX0,m/m ≡ γ.

• X = limX0,n/n exists a.s. and in L1 so EX = γ.

• If all stationary sequences in 2. are ergodic then X = γ a.s.

Proof: See [Dur10].
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3.3 Examples

The subadditive ergodic theorem is surprisingly useful.

EX 25.19 (Age-dependent continuous-time branching process) Start with one
individual. Each individual dies independently after time T ∼ F and at that point
produces K ∼ {pk}k offsprings (both with finite means). Let X0,m be the time of
birth of the first individual from generation m and Xm,n, the time to the birth of
the first descendant of that individual in generation n. We check the conditions:

1. Clearly
X0,m +Xm,n ≥ X0,n.

2. {Xnk,(n+1)k}n is IID because we are looking at the descendants of a single
individual (the first born) over k generations which are not overlapping.

3. The distribution of {Xm,m+k}k is independent of m for the same reason.

4. By nonnegativity and the finite mean of F , condition 4. is satisfied.

So we can apply the thm. By the IID remark above in 2. we get that the limit is
trivial. See [Dur10] for a characterization of the limit.

EX 25.20 (First-passage percolation) Consider Zd as a graph with edges con-
necting x, y ∈ Zd if ‖x − y‖1 = 1. Assign to each edge a nonnegative random
variable τ(e) corresponding to the time it takes to traverse e (in either direction).
Define t(x, y) (the passage time) as the minimum time to go from x to y. Let
Xm,n = t(mu, nu) where u = (1, 0, · · · , 0). We check the conditions:

1. Clearly
X0,m +Xm,n ≥ X0,n

2. {Xnk,(n+1)k}n is stationary by translational symmetry.

3. The distribution of {Xm,m+k}k is independent of m for the same reason.

4. By nonnegativity and the finite mean of τ , condition 4. is satisfied.

So we can apply the theorem. Enumerating the edges in some order, one can prove
(check!) that the limit is tail-measurable and, by the IID assumption, is trivial.
See [Dur10] for a characterization of the limit.
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