
Notes 26 : Brownian motion: definition

Math 733-734: Theory of Probability Lecturer: Sebastien Roch

References:[Dur10, Section 3.9, 8.1], [MP10, Section 1.1, Appendix B].
The goal of this lecture is to define and construct standard Brownian motion.

1 Multivariate Gaussians

We begin by reviewing some facts about multivariate Gaussians.

1.1 Random vectors

We first develop general tools to study multivariate distributions.

DEF 26.1 (Characteristic function) The characteristic function (CF) of a ran-
dom vector X = (X1, . . . , Xd) is given by, for t ∈ Rd,

φX(t) = E [exp (i(t1X1 + · · ·+ tdXd))] .

As in the one-dimensional case, we have an inversion formula:

THM 26.2 (Inversion formula) Let µ be the probability measure corresponding
to the random vector (X1, . . . , Xd), that is, for all B ∈ B(Rd),

µ(B) = P[(X1, . . . , Xd) ∈ B].

If A = [a1, b1]× · · · × [ad, bd] with µ(∂A) = 0 then

µ(A) = lim
T→+∞

(2π)−d
∫
[−T,T ]d

d∏
j=1

ψj(tj)φ(t)dt,

where

ψj(s) =
exp(−isaj)− exp(−isbj)

is
.

Proof: Follows from the one-dimensional inversion formula. See [Dur10, Theo-
rem 3.9.3].

An important application of the previous formula is:
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THM 26.3 The RVs X1, . . . , Xd are independent if and only if

φX(t) =

d∏
j=1

φXj (tj),

for all t ∈ Rd where X = (X1, . . . , Xd).

Proof: The “only if” part is obvious. The inversion formula and Fubini’s theorem
gives the “if” part.

DEF 26.4 A sequence of random vectors Xn converges weakly to X∞, denoted
Xn ⇒ X∞, if

E[f(Xn)]→ E[f(X∞)],

for all bounded continuous functions f . The portmanteau theorem gives equivalent
characterizations.

In terms of CFs, we have:

THM 26.5 (Convergence theorem) LetXn, 1 ≤ n ≤ ∞, be random vectors with
CFs φn. A necessary and sufficient condition for Xn ⇒ X∞ is that

φn(t)→ φ∞(t),

for all t ∈ Rd.

Proof: Follows from the one-dimensional result. See [Dur10, Theorem 3.9.4].
We require one last definition:

DEF 26.6 (Covariance) Let X = (X1, . . . , Xd) be a random vector with mean
µ = E[X]. The covariance of X is the d× d matrix Γ with entries

Γij = Cov[Xi, Xj ] = E[(Xi − µi)(Xj − µj)].

1.2 Multivariate Gaussian: definition

Recall:

DEF 26.7 (Gaussian distribution) A standard Gaussian is a RV Z with CF

φZ(t) = exp
(
−t2/2

)
,

and density

fZ(x) =
1√
2π

exp
(
−x2/2

)
.
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In particular, Z has mean 0 and variance 1. More generally,

X = σZ + µ,

is a Gaussian RV with mean µ ∈ R and variance σ2 > 0.

We will need a multivariate generalization of the standard Gaussian.

DEF 26.8 (Multivariate Gaussian) A d-dimensional standard Gaussian is a ran-
dom vector X = (X1, . . . , Xd) where the Xis are independent standard Gaus-
sians. In particular, X has mean 0 and covariance matrix I . More generally, a
random vector X = (X1, . . . , Xd) is Gaussian if there is a vector b, a d× r matrix
A and an r-dimensional standard Gaussian Y such that

X = AY + b.

Then X has mean µ = b and covariance matrix Γ = AAT . The CF of X is given
by

φX(t) = exp

i d∑
j=1

tjµj −
1

2

d∑
j,k=1

tjtkΓjk

 .

From the CF and the theorems above, we get the following:

COR 26.9 (Independence) Let X = (X1, . . . , Xd) be a multivariate Gaussian.
Then the Xis are independent if and only if Γij = 0 for all i 6= j, that is, if they are
uncorrelated.

COR 26.10 (Linear combinations) The random vector (X1, . . . , Xd) is multi-
variate Gaussian if and only if all linear combinations of its components are Gaus-
sian.

COR 26.11 (Convergence) Let Xn be a sequence of multivariate Gaussian vec-
tors with means µn and covariances Γn such that Xn → X∞ a.s., µu → µ∞, and
Γn → Γ∞. Then X∞ is a multivariate Gaussian with mean µ∞ and covariance
matrix Γ∞.

Finally:

THM 26.12 (Multivariate CLT) LetX1, X2, . . . be IID random vectors with means
µ and finite covariance matrix Γ. Let Sn =

∑n
j=1Xj , Then

Sn − nµ√
n

⇒ Z,

where Z is a multivariate Gaussian with mean 0 and covariance matrix Γ.

Proof: Follows easily from one-dimensional result. See [Dur10, Theorem 3.9.6].
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2 Brownian motion: definition

We give two equivalent definitions of Brownian motion. The first one relies on the
notion of a Gaussian process.

DEF 26.13 (Gaussian process) A continuous-time stochastic process {X(t)}t≥0
is a Gaussian process if for all n ≥ 1 and 0 ≤ t1 < · · · < tn < +∞ the random
vector

(X(t1), . . . , X(tn)),

is multivariate Gaussian. The mean and covariance functions of X are E[X(t)]
and Cov[X(s), X(t)] respectively.

DEF 26.14 (Brownian motion: Definition I) The continuous-time stochastic pro-
cess X = {X(t)}t≥0 is a standard Brownian motion if X is a Gaussian process
with almost surely continuous paths, that is,

P[X(t) is continuous in t] = 1,

such that X(0) = 0,
E[X(t)] = 0,

and
Cov[X(s), X(t)] = s ∧ t.

More generally, B = σX + x is a Brownian motion started at x.

From the properties of the multivariate Gaussian, we get the following equiva-
lent definition. This one focuses on the properties of its increments.

DEF 26.15 (Stationary independent increments) An SP {X(t)}t≥0 has station-
ary increments if the distribution of X(t) − X(s) depends only on t − s for all
0 ≤ s ≤ t. It has independent increments if the RVs {X(tj+1−X(tj)), 1 ≤ j < n}
are independent whenever 0 ≤ t1 < t2 < · · · < tn and n ≥ 1.

DEF 26.16 (Brownian motion: Definition II) The continuous-time stochastic pro-
cess X = {X(t)}t≥0 is a standard Brownian motion if X has almost surely con-
tinuous paths and stationary independent increments such that X(s+ t)−X(s) is
Gaussian with mean 0 and variance t.

See [Dur10, Chapter 8.1] for proof of the equivalence.
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3 Brownian motion: construction

Given that standard Brownian motion is defined in terms of finite-dimensional dis-
tributions, it is tempting to attempt to construct it by using Kolmogorov’s Extension
Theorem.

THM 26.17 (Kolmogorov’s Extension Theorem: Uncountable Case) Let

Ω0 = {ω : [0,∞)→ R},

and F0 be the σ-field generated by the finite-dimensional sets

{ω : ω(ti) ∈ Ai, 1 ≤ i ≤ n},

for Ai ∈ B. There is a unique probability measure ν on (Ω0,F0) so that

ν({ω : ω(0) = 0}) = 1

and whenever 0 ≤ t1 < · · · < tn with n ≥ 1 we have

ν({ω : ω(ti) ∈ Ai}) = µt1,...,tn(A1 × · · · ×An),

where the latter is the finite-dimensional distribution of standard Brownian motion.

See [Dur10]. The only problem with this approach is that the event

C = {ω : ω(t) is continuous in t},

is not in F0. See Exercise 8.1.1 in [Dur10].
Instead, we proceed as follows. There are several constructions of Brownian

motion. We present Lévy’s contruction, as described in [MP10].

THM 26.18 (Existence) Standard Brownian motion B = {B(t)}t≥0 exists.

Proof: We first constructB on [0, 1]. The idea is to construct the process on dyadic
points and extend it linearly. Let

Dn = {k2−n : 0 ≤ k ≤ 2n},

and
D = ∪∞n=0Dn.

Note that D is countable and consider {Zt}t∈D a collection of independent stan-
dard Gaussians. We define B(d) for d ∈ Dn by induction. First take B(0) = 0
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and B(1) = Z1. Note that B(1) − B(0) is Gaussian with variance 1. Then for
d ∈ Dn\Dn−1 we let

B(d) =
B(d− 2−n) +B(d+ 2−n)

2
+

Zd

2(n+1)/2
.

By construction, B(d) is independent of {Zt : t ∈ D\Dn}. Moreover, as a linear
combination of zero-mean Gaussians, B(d) is a zero-mean Gaussian.

We claim that the differences B(d) − B(d − 2−n), for all d ∈ Dn\{0}, are
independent Gaussians with variance 2−n (recall that for Gaussians, pairwise in-
dependence suffices).

• We first argue about neighboring increments. Note that, for d ∈ Dn\Dn−1,

B(d)−B(d− 2−n) =
B(d+ 2−n)−B(d− 2−n)

2
+

Zd

2 · 2(n−1)/2
,

and

B(d+ 2−n)−B(d) =
B(d+ 2−n)−B(d− 2−n)

2
− Zd

2 · 2(n−1)/2
,

are Gaussians and they are independent by the following lemma. By induc-
tion the differences above are Gaussians with variance 2−(n−1) and indepen-
dent of Zd.

LEM 26.19 If (X1, X2) is a standard Gaussian then so is 1√
2
(X1+X2, X1−

X2).

• More generally, the two intervals are separated by d ∈ Dj . Take a minimal
such j. Then, by induction, the increments over the intervals [d−2−j , d] and
[d, d+2−j ] are independent. Moreover, the increments over the two intervals
of length 2−n of interest (included in the above intervals) are constructed
from B(d)−B(d− 2−j), respectively B(d+ 2−j)−B(d), using a disjoint
set of variables {Zt : t ∈ Dn}. That proves the claim by induction.

We now interpolate linearly between dyadic points. More precisely, let

F0(t) =


Z1, t = 1,

0, t = 0,

linearly, in between.
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and for n ≥ 1

Fn(t) =


2−(n+1)/2Zt, t ∈ Dn\Dn−1,

0, t ∈ Dn−1,

linearly, in between.

We then have for d ∈ Dn

B(d) =

n∑
i=0

Fi(d) =

∞∑
i=0

Fi(d).

Exercise: check by induction.
We want to show that the resulting process is continuous on [0, 1]. We claim

that the series

B(t) =

∞∑
n=0

Fn(t),

is uniformly convergent. From a bound on Gaussian tails we saw last quarter,

P[|Zd| ≥ c
√
n] ≤ exp

(
−c2n/2

)
,

so that for c large enough

∞∑
n=0

P[∃d ∈ Dn, |Zd| ≥ c
√
n] ≤

∞∑
n=0

(2n + 1) exp
(
−c2n/2

)
< +∞.

By BC, there is N (random) such that |Zd| < c
√
n for all d ∈ Dn with n > N . In

particular, for n > N we have

‖Fn‖∞ < c
√
n2−(n+1)/2,

from which we get the claim.
To show thatB(t) has the correct finite-dimensional distributions, note that this

is the case for D by the above argument. Since D is dense in [0, 1] the result holds
on [0, 1] by taking limits and using the convergence theorem for Gaussians from
the previous lecture.

Finally, we extend the process to [0,+∞) by gluing together independent
copies of B(t).
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