
Notes 27 : Brownian motion: path properties

Math 733-734: Theory of Probability Lecturer: Sebastien Roch

References:[Dur10, Section 8.1], [MP10, Section 1.1, 1.2, 1.3].
Recall:

DEF 27.1 (Covariance) Let X = (X1, . . . , Xd) be a random vector with mean
µ = E[X]. The covariance of X is the d× d matrix Γ with entries

Γij = Cov[Xi, Xj ] = E[(Xi − µi)(Xj − µj)].

DEF 27.2 (Gaussian distribution) A standard Gaussian is a RV Z with CF

φZ(t) = exp
(
−t2/2

)
,

and density

fZ(x) =
1√
2π

exp
(
−x2/2

)
.

In particular, Z has mean 0 and variance 1. More generally,

X = σZ + µ,

is a Gaussian RV with mean µ ∈ R and variance σ2 > 0.

DEF 27.3 (Multivariate Gaussian) A d-dimensional standard Gaussian is a ran-
dom vector X = (X1, . . . , Xd) where the Xis are independent standard Gaus-
sians. In particular, X has mean 0 and covariance matrix I . More generally, a
random vector X = (X1, . . . , Xd) is Gaussian if there is a vector b, a d× r matrix
A and an r-dimensional standard Gaussian Y such that

X = AY + b.

Then X has mean µ = b and covariance matrix Γ = AAT . The CF of X is given
by

φX(t) = exp

i d∑
j=1

tjµj −
1

2

d∑
j,k=1

tjtkΓjk

 .

1



Lecture 27: Brownian motion: path properties 2

COR 27.4 (Independence) Let X = (X1, . . . , Xd) be a multivariate Gaussian.
Then the Xis are independent if and only if Γij = 0 for all i 6= j, that is, if they are
uncorrelated.

COR 27.5 (Linear combinations) The random vector (X1, . . . , Xd) is multivari-
ate Gaussian if and only if all linear combinations of its components are Gaussian.

DEF 27.6 (Gaussian process) A continuous-time stochastic process {X(t)}t≥0 is
a Gaussian process if for all n ≥ 1 and 0 ≤ t1 < · · · < tn < +∞ the random
vector

(X(t1), . . . , X(tn)),

is multivariate Gaussian. The mean and covariance functions of X are E[X(t)]
and Cov[X(s), X(t)] respectively.

DEF 27.7 (Brownian motion: Definition I) The continuous-time stochastic pro-
cess X = {X(t)}t≥0 is a standard Brownian motion if X is a Gaussian process
with almost surely continuous paths, that is,

P[X(t) is continuous in t] = 1,

such that X(0) = 0,
E[X(t)] = 0,

and
Cov[X(s), X(t)] = s ∧ t.

More generally, B = σX + x is a Brownian motion started at x.

DEF 27.8 (Stationary independent increments) An SP {X(t)}t≥0 has station-
ary increments if the distribution of X(t) − X(s) depends only on t − s for all
0 ≤ s ≤ t. It has independent increments if the RVs {X(tj+1−X(tj)), 1 ≤ j < n}
are independent whenever 0 ≤ t1 < t2 < · · · < tn and n ≥ 1.

DEF 27.9 (Brownian motion: Definition II) The continuous-time stochastic pro-
cess X = {X(t)}t≥0 is a standard Brownian motion if X has almost surely con-
tinuous paths and stationary independent increments such that X(s+ t)−X(s) is
Gaussian with mean 0 and variance t.

THM 27.10 (Existence) Standard Brownian motion B = {B(t)}t≥0 exists.
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1 Invariance

We begin with some useful invariance properties. The following are immediate.

THM 27.11 (Time translation) Let s ≥ 0. If B(t) is a standard Brownian mo-
tion, then so is X(t) = B(t+ s)−B(s).

THM 27.12 (Scaling invariance) Let a > 0. If B(t) is a standard Brownian mo-
tion, then so is X(t) = a−1B(a2t).

Proof: (Sketch) We compute the variance of the increments:

Var[X(t)−X(s)] = Var[a−1(B(a2t)−B(a2s))]

= a−2(a2t− a2s)
= t− s.

THM 27.13 (Time inversion) If B(t) is a standard Brownian motion, then so is

X(t) =

{
0, t = 0,

tB(t−1), t > 0.

Proof: (Sketch) We compute the covariance function for s < t:

Cov[X(s), X(t)] = Cov[sB(s−1), tB(t−1)]

= st
(
s−1 ∧ t−1

)
= s.

It remains to check continuity at 0. Note that{
lim
t↓0

B(t) = 0

}
=
⋂
m≥1

⋃
n≥1
{|B(t)| ≤ 1/m, ∀t ∈ Q ∩ (0, 1/n)} ,

and {
lim
t↓0

X(t) = 0

}
=
⋂
m≥1

⋃
n≥1
{|X(t)| ≤ 1/m, ∀t ∈ Q ∩ (0, 1/n)} .

(We are using continuity on t > 0.) The RHSs have the same probability because
the distributions on all finite-dimensional sets (including 0)—and therefore on the
rationals—are the same. The LHS of the first one has probability 1.

Typical applications of these are:
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COR 27.14 For a < 0 < b, let

T (a, b) = inf {t ≥ 0 : B(t) ∈ {a, b}} .

Then
E[T (a, b)] = a2E[T (1, b/a)].

In particular, E[T (−b, b)] is a constant multiple of b2.

Proof: Let X(t) = a−1B(a2t). Then,

E[T (a, b)] = a2E[inf{t ≥ 0, : X(t) ∈ {1, b/a}}]
= a2E[T (1, b/a)].

COR 27.15 Almost surely,
t−1B(t)→ 0.

Proof: Let X(t) be the time inversion of B(t). Then

lim
t→∞

B(t)

t
= lim

t→∞
X(1/t) = X(0) = 0.

2 Modulus of continuity

By construction, B(t) is continuous a.s. In fact, we can prove more.

DEF 27.16 (Hölder continuity) A function f is said locally α-Hölder continuous
at x if there exists ε > 0 and c > 0 such that

|f(x)− f(y)| ≤ c|x− y|α,

for all y with |y − x| < ε. We refer to α as the Hölder exponent and to c as the
Hölder constant.

THM 27.17 (Holder continuity) If α < 1/2, then almost surely Brownian motion
is everywhere locally α-Hölder continuous.

Proof:
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LEM 27.18 There exists a constant C > 0 such that, almost surely, for every
sufficiently small h > 0 and all 0 ≤ t ≤ 1− h,

|B(t+ h)−B(t)| ≤ C
√
h log(1/h).

Proof: Recall our construction of Brownian motion on [0, 1]. Let

Dn = {k2−n : 0 ≤ k ≤ 2n},
and

D = ∪∞n=0Dn.
Note that D is countable and consider {Zt}t∈D a collection of independent stan-
dard Gaussians. Let

F0(t) =


Z1, t = 1,

0, t = 0,

linearly, in between.

and for n ≥ 1

Fn(t) =


2−(n+1)/2Zt, t ∈ Dn\Dn−1,
0, t ∈ Dn−1,
linearly, in between.

Finally

B(t) =

∞∑
n=0

Fn(t).

Each Fn is piecewise linear and its derivative exists almost everywhere. By
construction, we have

‖F ′n‖∞ ≤
‖Fn‖∞

2−n
.

Recall that there is N (random) such that |Zd| < c
√
n for all d ∈ Dn with n > N .

In particular, for n > N we have

‖Fn‖∞ < c
√
n2−(n+1)/2.

Using the mean-value theorem, assuming l > N ,

|B(t+ h)−B(t)| ≤
∞∑
n=0

|Fn(t+ h)− Fn(t)|

≤
l∑

n=0

h‖F ′n‖∞ +

∞∑
n=l+1

2‖Fn‖∞,

≤ h
N∑
n=0

‖F ′n‖∞ + ch
l∑

n=N

√
n2n/2 + 2c

∞∑
n=l+1

√
n2−n/2.
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(The idea above is that the sup norm and the sup norm of the derivatives by them-
selves are not good enough. But each is good in its own domain: derivative for
small n because of the h, sup norm for large n because the series is summable. You
need to combina them and find the right breakpoint, that is, when both are essen-
tially equal.) Take h small enough that the first term is smaller than

√
h log(1/h)

and l defined by 2−l < h ≤ 2−l+1 exceedsN . Then approximating the second and
third terms by their largest element gives the result.

We go back to the proof of the theorem. For each k, we can find an h(k) small
enough so that the result applies to the standard BMs

{B(k + t)−B(k) : t ∈ [0, 1]},

and
{B(k + 1− t)−B(k + 1) : t ∈ [0, 1]}.

(By the same kind of invariance arguments we used before, time reversal preserves
standard BM. We need the time reversal because the theorem is stated only for
increments in one direction.) Since there are countably many intervals [k, k + 1),
such h(k)’s exist almost surely on all intervals simultaneously. Then note that for
any α < 1/2, if t ∈ [k, k + 1) and h < h(k) small enough,

|B(t+ h)−B(t)| ≤ C
√
h log(1/h) ≤ Chα(= Ch1/2(1/h)(1/2−α)).

This concludes the proof.
In fact:

THM 27.19 (Lévy’s modulus of continuity) Almost surely,

lim sup
h↓0

sup
0≤t≤1−h

|B(t+ h)−B(t)|√
2h log(1/h)

= 1.

For the proof, see [MP10].
This result is tight. See [MP10, Remark 1.21].

3 Non-Monotonicity

A first example of “irregularity”:

THM 27.20 Almost surely, for all 0 < a < b < +∞, standard BM is not mono-
tone on the interval [a, b].
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Proof: It suffices to look at intervals with rational endpoints because any general
non-degenerate interval of monotonicity must contain one of those. Since there are
countably many rational intervals, it suffices to prove that any particular one has
probability 0 of being monotone. Let [a, b] be such an interval. Note that for any
finite sub-division

a = a0 < a1 < · · · < an−1 < an = b,

the probability that each increment satisfies

B(ai)−B(ai−1) ≥ 0, ∀i = 1, . . . , n,

or the same with negative, is at most

2

(
1

2

)n
→ 0,

as n→∞ by symmetry of Gaussians.
More generally, we can prove the following.

THM 27.21 Almost surely, BM satisfies:

1. The set of times at which local maxima occur is dense.

2. Every local maximum is strict.

3. The set of local maxima is countable.

Proof: Part (3). We use part (2). If t is a strict local maximum, it must be in the set

+∞⋃
n=1

{
t : B(t, ω) > B(s, ω), ∀s, |s− t| < n−1

}
.

But for each n, the set must be countable because two such t’s must be separated
by n−1. So the union is countable.

4 Non-differentiability

SoB(t) grows slower than t. But the following lemma shows that its limsup grows
faster than

√
t.

LEM 27.22 Almost surely

lim sup
n→+∞

B(n)√
n

= +∞.

And similarly for lim inf .
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Proof: By reverse Fatou,

P[B(n) > c
√
n i.o.] ≥ lim sup

n→+∞
P[B(n) > c

√
n] = lim sup

n→+∞
P[B(1) > c] > 0,

by the scaling property. Thinking of B(n) as the sum of Xn = B(n)−B(n− 1),
the event on the LHS is exchangeable and the Hewitt-Savage 0-1 law implies that
it has probability 1 (where we used the positive lower bound).

DEF 27.23 (Upper and lower derivatives) For a function f , we define the upper
and lower right derivatives as

D∗f(t) = lim sup
h↓0

f(t+ h)− f(t)

h
,

and

D∗f(t) = lim inf
h↓0

f(t+ h)− f(t)

h
.

We begin with an easy first result.

THM 27.24 Fix t ≥ 0. Then almost surely Brownian motion is not differentiable
at t. Moreover, D∗B(t) = +∞ and D∗B(t) = −∞.

Proof: Consider the time inversion X . Then

D∗X(0) ≥ lim sup
n→+∞

X(n−1)−X(0)

n−1
= lim sup

n→+∞
B(n) = +∞,

by the lemma above. This proves the result at 0. Then note thatX(s) = B(t+s)−
B(s) is a standard Brownian motion and differentiability of X at 0 is equivalent to
differentiability of B at t.

In fact, we can prove something much stronger.

THM 27.25 Almost surely, BM is nowhere differentiable. Furthermore, almost
surely, for all t

D∗B(t) = +∞,

or
D∗B(t) = −∞,

or both.
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Proof: Suppose there is t0 such that the latter does not hold. By boundedness of
BM over [0, 1], we have

sup
h∈[0,1]

|B(t0 + h)−B(t0)|
h

≤M,

for some M < +∞. Assume t0 is in [(k − 1)2−n, k2−n] for some k, n. Then for
all 1 ≤ j ≤ 2n − k, in particular, for j = 1, 2, 3,

|B((k + j)2−n)−B((k + j − 1)2−n)|
≤ |B((k + j)2−n)−B(t0)|+ |B(t0)−B((k + j − 1)2−n)|
≤M(2j + 1)2−n,

by our assumption. Define the events

Ωn,k = {|B((k + j)2−n)−B((k + j − 1)2−n)| ≤M(2j + 1)2−n, j = 1, 2, 3}.

It suffices to show that ∪2n−3k=1 Ωn,k cannot happen for infinitely many n. Indeed,

P

[
∃t0 ∈ [0, 1], sup

h∈[0,1]

|B(t0 + h)−B(t0)|
h

≤M

]

≤ P

[
2n−3⋃
k=1

Ωn,k for infinitely many n

]
.

(Then the result follows by taking all [k, k + 1] intervals and all M integers.) But
by the independence of increments

P[Ωn,k] =

3∏
j=1

P[|B((k + j)2−n)−B((k + j − 1)2−n)| ≤M(2j + 1)2−n]

≤ P
[
|B(2−n)| ≤ 7M

2n

]3
= P

[∣∣∣∣ 1√
2−n

B

([√
2−n

]2)∣∣∣∣ ≤ 7M√
2−n · 2n

]3
= P

[
|B(1)| ≤ 7M√

2n

]3
≤

(
7M√

2n

)3

,
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because the density of a standard Gaussian is bounded by 1/2. (The choice of 3
comes from summability.) Hence

P

[
2n−3⋃
k=1

Ωn,k

]
≤ 2n

(
7M√

2n

)3

= (7M)32−n/2,

which is summable. The result follows from BC. That is, the probability above is
0.

5 Quadratic variation

Recall:

DEF 27.26 (Bounded variation) A function f : [0, t] → R is of bounded varia-
tion if there is M < +∞ such that

k∑
j=1

|f(tj)− f(tj−1)| ≤M,

for all k ≥ 1 and all partitions 0 = t0 < t1 < · · · < tk = t. Otherwise, we say
that it is of unbounded variation.

Functions of bounded variation are known to be differentiable. Since BM is nowhere
differentiable, it must have unbounded variation. However, BM has a finite “quadratic
variation.”

THM 27.27 (Quadratic variation) Suppose the sequence of partitions

0 = t
(n)
0 < t

(n)
1 < · · · < t

(n)
k(n) = t,

is nested, that is, at each step one or more partition points are added, and the mesh

∆(n) = sup
1≤j≤k(n)

{t(n)j − t
(n)
j−1},

converges to 0. Then, almost surely,

lim
n→+∞

k(n)∑
j=1

(B(t
(n)
j )−B(t

(n)
j−1))

2 = t.
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Proof: By considering subsequences, it suffices to consider the case where one
point is added at each step. Let

X−n =

k(n)∑
j=1

(B(t
(n)
j )−B(t

(n)
j−1))

2.

Let
G−n = σ(X−n, X−n−1, . . .)

and

G−∞ =

∞⋂
k=1

G−k.

CLAIM 27.28 We claim that {X−n} is a reversed MG.

Proof: We want to show that

E[X−n+1 | G−n] = X−n.

In particular, this will imply by induction

X−n = E[X−1 | G−n].

Assume that, at step n, the new point s is added between the old points t1 < t2.
Write

X−n+1 = (B(t2)−B(t1))
2 +W,

and
X−n = (B(s)−B(t1))

2 + (B(t2)−B(s))2 +W,

where W is independent of the other terms. We claim that

E[(B(t2)−B(t1))
2 | (B(s)−B(t1))

2 + (B(t2)−B(s))2]

= (B(s)−B(t1))
2 + (B(t2)−B(s))2,

which follows from the following lemma.

LEM 27.29 Let X,Z ∈ L2 be independent and assume Z is symmetric. Then

E[(X + Z)2 |X2 + Z2] = X2 + Z2.
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Proof: By symmetry of Z,

E[(X + Z)2 |X2 + Z2] = E[(X − Z)2 |X2 + (−Z)2]

= E[(X − Z)2 |X2 + Z2].

Taking the difference we get

E[XZ |X2 + Z2] = 0.

The fact that X−n is a reversed MG follows from the argument above. (Exer-
cise.)

We return to the proof of the theorem. By Lévy’s Downward Theorem,

X−n → E[X−1 | G−∞],

almost surely. Note that E[X−1] = E[X−n] = t. Moreover, by (FATOU), the
variance of the limit (the fourth central moment of the Gaussian in 3σ4)

E[(E[X−1 | G−∞]− t)2] ≤ lim inf
n

E[(X−n − t)2]

≤ lim inf
n

Var

k(n)∑
j=1

(B(t
(n)
j )−B(t

(n)
j−1))

2


= lim inf

n
3

k(n)∑
j=1

(t
(n)
j − t

(n)
j−1)

2

≤ 3t lim inf
n

∆(n)

= 0.

So finally
E[X−1 | G−∞] = t.
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