Notes 3 : Modes of convergence

Math 733-734: Theory of Probability Lecturer: Sebastien Roch

References: [Wil91, Chapters 2.6-2.8], [Durl0, Sections 2.2, 2.3].

1 Modes of convergence

Let (2, F,P) be a probability space. We will encounter various modes of conver-
gence for sequences of RVs on (2, F, P).

DEF 3.1 (Modes of convergence) Let { X, }, be a sequence of (not necessarily
independent) RVs and let X be a RV. Then we have the following definitions.

e Convergence in probability: Ve > 0, P[|.X,,— X| > ¢] — 0 (asn — +00);
which we denote by X,, —p X.

e Convergence almost sure: P[X,, — X] = 1.
e Convergence in £ (p > 1): E|X,, — X|P — 0.

To better understand the relationship between these different modes of conver-
gence, we will need Markov’s inequality as well as the Borel-Cantelli lemmas.
We first state these, then come back to applications of independent interest below.

1.1 Markov’s inequality

LEM 3.2 (Markov’s inequality) Ler Z > 0 be a RV on (2, F,P). Then for all

a>0
E[Z]

PZ > a] <
a

Proof: We have
E[Z] > E[ZH{ZZa}} > GE[]I{ZZQ}] =aP[Z > a],

where note that the first inequality uses nonnegativity. |
Recall that (assuming the first and second moments exist):

Var[X] = E[(X — E[X])?] = E[X?] - (E[X])".
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LEM 3.3 (Chebyshev’s inequality) Let X be a RV on (2, F,P) with Var[X]| <
~4o00. Then for all a > 0

Var[X
P[|X — E[X]| > a] < a;£ |
Proof: Apply Markov’s inequality to Z = (X — E[X])2. [ |

An immediate application of Chebyshev’s inequality is the following.

THM 3.4 Let (S,,), be a sequence of RVs with ,, = E[S,] and 02 = Var[S,,]. If
o2 /b2 — 0, then
Snp — Hn

—p 0.
by P

1.2 Borel-Cantelli lemmas

DEF 3.5 (Almost surely) Event A occurs almost surely (a.s.) if P[A] = 1.

DEF 3.6 (Infinitely often, eventually) Let (A,), be a sequence of events. Then
we define

Ay, infinitely often (i.0.) = {w :w is in infinitely many A, }

= limsup A,
n

= ﬂ—DoAn

m n=m
Note that
1, jo =limsuply,.
n
Similarly,

—+00
Ay, eventually (ev.) = {w : wis in A, for all large n} = liminf A,, = U ﬂ A,.

m n=m

Note that
]lAn ey. — lim inf ]lAn.
n

Also we have (A, ev.)¢ = (AS i.0.).



Lecture 3: Modes of convergence 3

LEM 3.7 (First Borel-Cantelli lemma (BC1)) Let (A,,),, be as above. If

ZIP’ ] < 400,

then
P[A,, i.0.] = 0.

Proof: This follows trivially from the monotone-convergence theorem (or Fubini’s
theorem). Indeed let N = " 14, . Then

Z]P’ ] < 400,

and therefore N < 400 a.s. ]

EX 3.8 Let X1, Xs,... be independent with P|X,, = f,] = p, and P[X,, =
0] = 1 — py, for nondecreasing f, > 0 and nonincreasing p, > 0. By (BCI), if
> P < o0 then X,, — 0 a.s.

The converse is only true in general for IID sequences.

LEM 3.9 (Second Borel-Cantelli lemma (BC2)) If the events (A,,), are inde-
pendent, then ) P[A,] = +o00 implies P[A,, i.0.] = 1.

Proof: Take M < N < 4oc. Then by independence

N
PN A5l = J] (1
n=M
N
< exp <_ Z P[An]>
n=M
— 0,

as N — +o00. So P[U'>,A,] = 1 and further
P [OM U;rioM An] =1,
by monotonicity. [ ]

EX 3.10 Let X, Xo, ... be independent with P|X,, = f,| = pn and P[X,, = 0] =
1 — py, for nondecreasing f,, > 0 and nonincreasing p,, > 0. By (BC1) and (BC2),
X, = 0a.s. ifand only if Y, pp < 4o00.
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1.3 Returning to convergence modes
We return to our example.

EX 3.11 Let X1, Xs,... be independent with P[X,, = f,| = pn and P[X,, =
0] = 1 — py, for nondecreasing f, > 0 and nonincreasing p, > 0. The cases
fn =1, fn = \/n, and f, = n? are interesting. In the first one, convergence in
probability (which is equivalent to p, — 0) and in L" (1 - p,, — 0) are identical,
but a.s. convergence follows from a stronger condition (), p, < +00). In the
second one, convergence in L' (\/np, — 0) can happen without convergence
a.s. (3, pn < +00) orin L2 (np, — 0). Take for instance p, = 1/n. In the
last one, convergence a.s. (., pn < +00) can happen without convergence in L'
(n*pp, — 0) or in L? (n*p,, — 0). Take for instance p,, = 1/n>.

In general we have:

THM 3.12 (Implications) e a.s. = in prob (Hint: Fatou’s lemma)
o [P = inprob (Hint: Markov’s inequality)
o forr >p>1 L = LP (Hint: Jensen’s inequality)

e in prob if and only if every subsequence contains a further subsequence that
convergence a.s. (Hint: (BCI1) for —> direction)

Proof: We prove the first, second and (one direction of the) fourth one. For the
first one, we need the following lemma.

LEM 3.13 (Reverse Fatou lemma) Ler (S, X, i) be a measure space. Let (fy)n €
(mX) T such that there is g € (mX) " with f,, < g foralln and u(g) < +oo. Then

p(limsup f,) > limsup pu(fn).
n n

(This follows from applying (FATOU) to g — fn.)

Using the previous lemma on 1{|X,, — X| > ¢} gives the result.
For the second claim, note that by Markov’s inequality

E|X, — X|P

B[ Xo — X| > ] = B[ X, - XPP > & < ==

One direction of the fourth claim follows from (BC1). Indeed let (X, () )m be
a subsequence of (X, ),. Take €; | 0 and let my, be such that n(my) > n(mg_1)
and
—X‘ > é‘k] < 2_k,

my)
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which is summable. Therefore by (BC1), P[|X,,(,,) — X| > e i0.] = 0, ie,
Xo(my) — X as. For the other direction, see [D]. [
As a consequence of the last implication we get the following.

THM 3.14 If f is continuous and X,, — X in prob then f(X,) — f(X) in
probability.

Proof: For every subsequence (X, (,,))m there is a further subsequence (X, () )k
which converges a.s. and hence f(X,(,,)) — f(X) a.s. But this implies that
f(X,) — f(X) in probability. |

Our example and theorem show that a.s. convergence does not come from a
topology (or in particular from a metric). In contrast, it is possible to show that
convergence in probability corresponds to the Ky Fan metric

a(X,)Y)=inf{e >0 : P[|X - Y| >¢] <e}.
See [D].

1.4 Statement of laws of large numbers

Our first goal will be to prove the following.

THM 3.15 (Strong law of large numbers) Let X1, Xo, ... be IID with E|X1| <
+o00. (In fact, pairwise independence suffices.) Let S, = Zkzgn Xy and p =
E[X1]. Then

S,
= S, as.
n

If instead E| X 1| = 400 then
. Sn
P |lim — exists € (—o0,4+00)| = 0.
non
and

THM 3.16 (Weak law of large numbers) Let (X)), be IID and S,, = > k<n Xk-
A necessary and sufficient condition for the existence of constants (fi, )y such that

n

— — Up —P 07
n
is

nP[|X1i| > n] — 0.

In that case, the choice
Mn = E[X1]-|X1|§n]7

works.



Lecture 3: Modes of convergence 6

Before we give the proofs of these theorems, we discuss further applications of
Markov’s inequality and the Borel-Cantelli lemmas.

2 Further applications...

2.1 ...of Chebyshev’s inequality

Chebyshev’s inequality and Theorem 3.4 can be used to derive limit laws in some
cases where sequences are not necessarily IID. We give several important examples
from [D].

EX 3.17 (Occupancy problem) Suppose we throw r balls into n bins indepen-
dently uniformly at random. Let Ny, be the number of empty boxes. If A; is the
event that the i-th bin is empty, we have

PlA;] = <1 - i)

so that N,, = Zkgn 14, (not independent) and

E[N,] = n (1 _ i)

In particular, if r/n — p we have

EIN.]

n

e P.

Because there is no independence, the variance calculation is trickier. Note that

E[N =E (zn:h> = Y PlAnnAy],

and
Var[N,,] = E[NZ] — (E[N,])®
Z [[P’[Am N Am/] - P[Am]P[Am’H

1<mm’'<n
(n—1)[(1=2/n)" = (1 —1/n)*]+n[(1 - 1/n)" — (1 —1/n)*]
(n?) + O(n),

=n
o

where we divided the sum into cases m # m' and m = m/. Taking b, = n in

Theorem 3.4, we have

N, .,
— —pe "
n
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EX 3.18 (Coupon’s collector problem) Let X1, Xo, ... be IID uniform in [n] =
{1,...,n}. We are interested in the time it takes to see every element in [n| at least
once. Let

= inf{m : {X1,..., Xm}| =k},

be the first time we collect k different items, with the convention 7§ = 0. Let T}, =
7, Define X, = 7' — 7/’ and note that the X, };’s are independent (but not
identically distributed) with geometric distribution with parameter 1 — (k — 1) /n.
Recall that a geometric RV N with parameter p has law

PN =i] =p(1—p)" !,

and moments

1
E[N} =
b
and ) )
—-D
Var|N| = < =
] p? (‘ﬁ)
Hence
. -1\ -
E = — = —_—~
(T5) (1 - ) Z nlogn,
k=1 m=1
and

= k—1\"? S|
T,] < 1— =n? — < Cn?
Var| ]_;( - > nmz—:lmQ_Cn,

for some C > 0 not depending on n.
Taking b, = nlogn in Theorem 3.4 gives

Tp—n)megm™

nlogn

—Pp Oa

or
T

nlogn

—p 1.

The previous example involved a so-called triangular array { X,  }n>11<k<n-

EX 3.19 (Random permutations) Any permutation can be decomposed into cy-
cles. Eg., ifm = [3,9,6,8,2,1,5,4,7), then 7 = (136)(2975)(48). In fact, a
uniform permutation can be generated by following a cycle until it closes, then
starting over from the smallest unassigned element, and so on. Let X, . be the
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indicator that the k-th element in this construction precedes the closure of a cycle.
E.g., we have Xg93 = X97 = X9g9 = 1. The construction above implies that the
Xy 1's are independent and

1

Py ===

That is because only one of the remaining elements closes the cycle. Letting S,, =
Y ki<n Xn i be the number of cycles in  we have

1
E[S,) =)  ———— ~logn,

= n—j+1
and
Var[Sp] =Y Var[X,, ;] <Y E[X7 ] =) E[X,;] =E[S,].
j=1 j=1 j=1

Taking b, = logn in Theorem 3.4 we have

S
logn

—p 1.

2.2 ..of (BC1)

EX 3.20 (Head runs) Let (X,,)nez be IID with P[X,, = 1] = P[X,, = —1] =
1/2. Let

(with £, =0if X,, = —1) and

L, = max {,,.
1<m<n
Note that P[,, = k] = (1/2)**! for all n, k. (The 41 in the exponent is for the

first —1.) We will prove
Ly,

logy n

—1, a.s.

For the lower bound, it suffices to divide the sequence into disjoint blocks to
use independence. Take blocks of size [(1 — €)logyn] + 1 so that a block is all-1
with probability at least

9-[(1=e)loga n]=1 > 4y =(1=¢) /o
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For n large enough

n/logy n €
P[Ly, < (1 —¢)logyn] < (1—n‘<1‘5>/2) T8 < oxp (— )

which is summable. By (BC1),

lim inf L
no logan

>1—¢, as.

The upper bound follows from (BCI). Indeed note that, for any € > 0,

1 k+1
Plt, > (14 ¢)logyn] = Z (2) < n~0+e),
k>(1+4¢)logy n

so that
Plt, > (1 +¢)loggni.o] =0,

Hence, there is N, (random) such that £, < (1+¢)logy n for alln > N, and note
that the £,,’s with n < N¢ are finite a.s. as they have a finite expectation. Therefore

n

lim sup <l+4+e, as.

n 0go M

Since ¢ is arbitrary, we get the upper bound.

23 ..of (BC2)

We will need a more refined version of (BC2).

THM 3.21 If Ay, Ay, ... are pairwise independent and  ,, P[A,,| = +o00 then
221:1 La,,
2 m=1 P[Am]

Proof: Convergence in probability follows from Chebyshev’s inequality. Let X} =
1a, and S, =) k<n Xk- Then by pairwise independence

— 1, a.s.

Var[S,] = > Var[Xy] < Y E[X;] =Y E[Xy] = Y P[Ax] = E[S,],

k<n k<n k<n k<n

using X, € {0,1}. Then

P[|S, — E[S,]| > 6E[S,]] < (5\2/%1}5:]]2 - 52E1[5n]

— 0,



Lecture 3: Modes of convergence 10

by assumption. In particular,

We use a standard trick to obtain almost sure convergence. The idea is to take
subsequences, use (BC1), and sandwich the original sequence.)

1. Take
ng = inf{n : E[S,] > k?},

and let Ty = S,,. Since E[X,,] < 1 we have in particular k? < E[T}] <
k? + 1. Using Chebyshev again,

1

P[|Ty — E[T]| > 6E[T}]] < 2

which is summable so that, using (BC1) and the fact that § is arbitrary,

2. For n < n < ng41, we have by monotonicity

Tk < Sn Tk+1
E[Ti11] — E[Sa] = E[T}]
Finally, note that
E[Ty] Tk < Sn < Tii1 E[Tx1]
E[Tk+1] E[Tk] ~ E[S,] ~ E[Tk] E[Ty] °

and
k2 <E[T}] < E[Tpy1] < (k+1)2 41
Since the ratio of the two extremes terms goes to 1, the ratio of the expecta-

tions goes to 1 and we are done.

]
We will see this argument again when we prove the strong law of large num-
bers.

EX 3.22 (Record values) Let X1, Xo,. .. be a sequence of IID RVs with a contin-
uous DF F corresponding to, say, an individual’s times in a race. Let

Ap = X >sup X ¢,
j<k
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that is, that time k is a new record. Let R, = 14,,, we will prove that

m<n
R
" 51, as.
logn
Because F' is continuous, there is no atom and P[X; = X;] = 0 for j # k.

Let Y[* > --- > Y be the sequence X1, ..., X, in decreasing order. By the IID
assumption, the permutation 7y, (i) = j if X; = Y is clearly uniform by symmetry.

In particular,

P[A,] = Plra(n) = 1] = %

Moreover, for any my < ma, note that on A, the distribution of the relative
ordering of the X;s for i < mg is unchanged by symmetry and therefore
PlA,,, N A 1
[ mi m2] — ]P)[Aml] -
P[Amz] mq
We have proved that the Ay’s are pairwise independent and that P[Ay] = 1/k.
Now use the fact that

n

Z% ~ logn,

i=1

and the previous theorem. This proves the claim.
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