
Notes 3 : Modes of convergence

Math 733-734: Theory of Probability Lecturer: Sebastien Roch

References: [Wil91, Chapters 2.6-2.8], [Dur10, Sections 2.2, 2.3].

1 Modes of convergence

Let (Ω,F ,P) be a probability space. We will encounter various modes of conver-
gence for sequences of RVs on (Ω,F ,P).

DEF 3.1 (Modes of convergence) Let {Xn}n be a sequence of (not necessarily
independent) RVs and let X be a RV. Then we have the following definitions.

• Convergence in probability: ∀ε > 0, P[|Xn−X| > ε]→ 0 (as n→ +∞);
which we denote by Xn →P X .

• Convergence almost sure: P[Xn → X] = 1.

• Convergence in Lp (p ≥ 1): E|Xn −X|p → 0.

To better understand the relationship between these different modes of conver-
gence, we will need Markov’s inequality as well as the Borel-Cantelli lemmas.
We first state these, then come back to applications of independent interest below.

1.1 Markov’s inequality

LEM 3.2 (Markov’s inequality) Let Z ≥ 0 be a RV on (Ω,F ,P). Then for all
a > 0

P[Z ≥ a] ≤ E[Z]

a
.

Proof: We have

E[Z] ≥ E[Z1{Z≥a}] ≥ aE[1{Z≥a}] = aP[Z ≥ a],

where note that the first inequality uses nonnegativity.
Recall that (assuming the first and second moments exist):

Var[X] = E[(X − E[X])2] = E[X2]− (E[X])2.
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LEM 3.3 (Chebyshev’s inequality) Let X be a RV on (Ω,F ,P) with Var[X] <
+∞. Then for all a > 0

P[|X − E[X]| > a] ≤ Var[X]

a2
.

Proof: Apply Markov’s inequality to Z = (X − E[X])2.
An immediate application of Chebyshev’s inequality is the following.

THM 3.4 Let (Sn)n be a sequence of RVs with µn = E[Sn] and σ2n = Var[Sn]. If
σ2n/b

2
n → 0, then

Sn − µn
bn

→P 0.

1.2 Borel-Cantelli lemmas

DEF 3.5 (Almost surely) Event A occurs almost surely (a.s.) if P[A] = 1.

DEF 3.6 (Infinitely often, eventually) Let (An)n be a sequence of events. Then
we define

An infinitely often (i.o.) ≡ {ω : ω is in infinitely many An}
≡ lim sup

n
An

≡
⋂
m

+∞⋃
n=m

An.

Note that
1An i.o. = lim sup

n
1An .

Similarly,

An eventually (ev.) ≡ {ω : ω is in An for all large n} ≡ lim inf
n

An ≡
⋃
m

+∞⋂
n=m

An.

Note that
1An ev. = lim inf

n
1An .

Also we have (An ev.)c = (Acn i.o.).



Lecture 3: Modes of convergence 3

LEM 3.7 (First Borel-Cantelli lemma (BC1)) Let (An)n be as above. If∑
n

P[An] < +∞,

then
P[An i.o.] = 0.

Proof: This follows trivially from the monotone-convergence theorem (or Fubini’s
theorem). Indeed let N =

∑
n 1An . Then

E[N ] =
∑
n

P[An] < +∞,

and therefore N < +∞ a.s.

EX 3.8 Let X1, X2, . . . be independent with P[Xn = fn] = pn and P[Xn =
0] = 1 − pn for nondecreasing fn > 0 and nonincreasing pn > 0. By (BC1), if∑

n pn < +∞ then Xn → 0 a.s.

The converse is only true in general for IID sequences.

LEM 3.9 (Second Borel-Cantelli lemma (BC2)) If the events (An)n are inde-
pendent, then

∑
n P[An] = +∞ implies P[An i.o.] = 1.

Proof: Take M < N < +∞. Then by independence

P[∩Nn=MAcn] =
N∏

n=M

(1− P[An])

≤ exp

(
−

N∑
n=M

P[An]

)
→ 0,

as N → +∞. So P[∪+∞n=MAn] = 1 and further

P
[
∩M ∪+∞n=M An

]
= 1,

by monotonicity.

EX 3.10 LetX1, X2, . . . be independent with P[Xn = fn] = pn and P[Xn = 0] =
1− pn for nondecreasing fn > 0 and nonincreasing pn > 0. By (BC1) and (BC2),
Xn → 0 a.s. if and only if

∑
n pn < +∞.
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1.3 Returning to convergence modes

We return to our example.

EX 3.11 Let X1, X2, . . . be independent with P[Xn = fn] = pn and P[Xn =
0] = 1 − pn for nondecreasing fn > 0 and nonincreasing pn > 0. The cases
fn = 1, fn =

√
n, and fn = n2 are interesting. In the first one, convergence in

probability (which is equivalent to pn → 0) and in Lr (1 · pn → 0) are identical,
but a.s. convergence follows from a stronger condition (

∑
n pn < +∞). In the

second one, convergence in L1 (
√
npn → 0) can happen without convergence

a.s. (
∑

n pn < +∞) or in L2 (npn → 0). Take for instance pn = 1/n. In the
last one, convergence a.s. (

∑
n pn < +∞) can happen without convergence in L1

(n2pn → 0) or in L2 (n4pn → 0). Take for instance pn = 1/n2.

In general we have:

THM 3.12 (Implications) • a.s. =⇒ in prob (Hint: Fatou’s lemma)

• Lp =⇒ in prob (Hint: Markov’s inequality)

• for r ≥ p ≥ 1, Lr =⇒ Lp (Hint: Jensen’s inequality)

• in prob if and only if every subsequence contains a further subsequence that
convergence a.s. (Hint: (BC1) for =⇒ direction)

Proof: We prove the first, second and (one direction of the) fourth one. For the
first one, we need the following lemma.

LEM 3.13 (Reverse Fatou lemma) Let (S,Σ, µ) be a measure space. Let (fn)n ∈
(mΣ)+ such that there is g ∈ (mΣ)+ with fn ≤ g for all n and µ(g) < +∞. Then

µ(lim sup
n

fn) ≥ lim sup
n

µ(fn).

(This follows from applying (FATOU) to g − fn.)

Using the previous lemma on 1{|Xn −X| > ε} gives the result.
For the second claim, note that by Markov’s inequality

P[|Xn −X| > ε] = P[|Xn −X|p > εp] ≤ E|Xn −X|p

εp
.

One direction of the fourth claim follows from (BC1). Indeed let (Xn(m))m be
a subsequence of (Xn)n. Take εk ↓ 0 and let mk be such that n(mk) > n(mk−1)
and

P[|Xn(mk) −X| > εk] ≤ 2−k,
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which is summable. Therefore by (BC1), P[|Xn(mk) − X| > εk i.o.] = 0, i.e.,
Xn(mk) → X a.s. For the other direction, see [D].

As a consequence of the last implication we get the following.

THM 3.14 If f is continuous and Xn → X in prob then f(Xn) → f(X) in
probability.

Proof: For every subsequence (Xn(m))m there is a further subsequence (Xn(mk))k
which converges a.s. and hence f(Xn(mk)) → f(X) a.s. But this implies that
f(Xn)→ f(X) in probability.

Our example and theorem show that a.s. convergence does not come from a
topology (or in particular from a metric). In contrast, it is possible to show that
convergence in probability corresponds to the Ky Fan metric

α(X,Y ) = inf{ε ≥ 0 : P[|X − Y | > ε] ≤ ε}.

See [D].

1.4 Statement of laws of large numbers

Our first goal will be to prove the following.

THM 3.15 (Strong law of large numbers) Let X1, X2, . . . be IID with E|X1| <
+∞. (In fact, pairwise independence suffices.) Let Sn =

∑
k≤nXk and µ =

E[X1]. Then
Sn
n
→ µ, a.s.

If instead E|X1| = +∞ then

P
[
lim
n

Sn
n

exists ∈ (−∞,+∞)

]
= 0.

and

THM 3.16 (Weak law of large numbers) Let (Xn)n be IID and Sn =
∑

k≤nXk.
A necessary and sufficient condition for the existence of constants (µn)n such that

Sn
n
− µn →P 0,

is
nP[|X1| > n]→ 0.

In that case, the choice
µn = E[X11|X1|≤n],

works.
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Before we give the proofs of these theorems, we discuss further applications of
Markov’s inequality and the Borel-Cantelli lemmas.

2 Further applications...

2.1 ...of Chebyshev’s inequality

Chebyshev’s inequality and Theorem 3.4 can be used to derive limit laws in some
cases where sequences are not necessarily IID. We give several important examples
from [D].

EX 3.17 (Occupancy problem) Suppose we throw r balls into n bins indepen-
dently uniformly at random. Let Nn be the number of empty boxes. If Ai is the
event that the i-th bin is empty, we have

P[Ai] =

(
1− 1

n

)r
,

so that Nn =
∑

k≤n 1Ak
(not independent) and

E[Nn] = n

(
1− 1

n

)r
.

In particular, if r/n→ ρ we have

E[Nn]

n
→ e−ρ.

Because there is no independence, the variance calculation is trickier. Note that

E[N2
n] = E

( n∑
m=1

1Am

)2
 =

∑
1≤m,m′≤n

P[Am ∩Am′ ],

and

Var[Nn] = E[N2
n]− (E[Nn])2

=
∑

1≤m,m′≤n
[P[Am ∩Am′ ]− P[Am]P[Am′ ]]

= n(n− 1)[(1− 2/n)r − (1− 1/n)2r] + n[(1− 1/n)r − (1− 1/n)2r]

= o(n2) +O(n),

where we divided the sum into cases m 6= m′ and m = m′. Taking bn = n in
Theorem 3.4, we have

Nn

n
→P e

−ρ.
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EX 3.18 (Coupon’s collector problem) Let X1, X2, . . . be IID uniform in [n] =
{1, . . . , n}. We are interested in the time it takes to see every element in [n] at least
once. Let

τnk = inf{m : |{X1, . . . , Xm}| = k},

be the first time we collect k different items, with the convention τn0 = 0. Let Tn =
τnn . Define Xn,k = τnk − τnk−1 and note that the Xn,k’s are independent (but not
identically distributed) with geometric distribution with parameter 1− (k − 1)/n.
Recall that a geometric RV N with parameter p has law

P[N = i] = p(1− p)i−1,

and moments
E[N ] =

1

p
,

and

Var[N ] =
1− p
p2

(
≤ 1

p2

)
.

Hence

E[Tn] =
n∑
k=1

(
1− k − 1

n

)−1
= n

n∑
m=1

1

m
∼ n log n,

and

Var[Tn] ≤
n∑
k=1

(
1− k − 1

n

)−2
= n2

n∑
m=1

1

m2
≤ Cn2,

for some C > 0 not depending on n.
Taking bn = n log n in Theorem 3.4 gives

Tn − n
∑n

m=1m
−1

n log n
→P 0,

or
Tn

n log n
→P 1.

The previous example involved a so-called triangular array {Xn,k}n≥1,1≤k≤n.

EX 3.19 (Random permutations) Any permutation can be decomposed into cy-
cles. E.g., if π = [3, 9, 6, 8, 2, 1, 5, 4, 7], then π = (136)(2975)(48). In fact, a
uniform permutation can be generated by following a cycle until it closes, then
starting over from the smallest unassigned element, and so on. Let Xn,k be the
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indicator that the k-th element in this construction precedes the closure of a cycle.
E.g., we have X9,3 = X9,7 = X9,9 = 1. The construction above implies that the
Xn,k’s are independent and

P[Xn,j = 1] =
1

n− j + 1
.

That is because only one of the remaining elements closes the cycle. Letting Sn =∑
k≤nXn,k be the number of cycles in π we have

E[Sn] =
n∑
j=1

1

n− j + 1
∼ log n,

and

Var[Sn] =

n∑
j=1

Var[Xn,j ] ≤
n∑
j=1

E[X2
n,j ] =

n∑
j=1

E[Xn,j ] = E[Sn].

Taking bn = log n in Theorem 3.4 we have

Sn
log n

→P 1.

2.2 ...of (BC1)

EX 3.20 (Head runs) Let (Xn)n∈Z be IID with P[Xn = 1] = P[Xn = −1] =
1/2. Let

`n = max{m ≥ 1 : Xn−m+1 = · · · = Xn = 1},

(with `n = 0 if Xn = −1) and

Ln = max
1≤m≤n

`m.

Note that P[`n = k] = (1/2)k+1 for all n, k. (The +1 in the exponent is for the
first −1.) We will prove

Ln
log2 n

→ 1, a.s.

For the lower bound, it suffices to divide the sequence into disjoint blocks to
use independence. Take blocks of size [(1 − ε) log2 n] + 1 so that a block is all-1
with probability at least

2−[(1−ε) log2 n]−1 ≥ n−(1−ε)/2.



Lecture 3: Modes of convergence 9

For n large enough

P[Ln ≤ (1− ε) log2 n] ≤
(

1− n−(1−ε)/2
)n/ log2 n ≤ exp

(
− nε

log2 n

)
,

which is summable. By (BC1),

lim inf
n

Ln
log2 n

≥ 1− ε, a.s.

The upper bound follows from (BC1). Indeed note that, for any ε > 0,

P[`n ≥ (1 + ε) log2 n] =
∑

k≥(1+ε) log2 n

(
1

2

)k+1

≤ n−(1+ε),

so that
P[`n ≥ (1 + ε) log2 n i.o.] = 0,

Hence, there is Nε (random) such that `n ≤ (1 + ε) log2 n for all n ≥ Nε and note
that the `n’s with n < Nε are finite a.s. as they have a finite expectation. Therefore

lim sup
n

Ln
log2 n

≤ 1 + ε, a.s.

Since ε is arbitrary, we get the upper bound.

2.3 ...of (BC2)

We will need a more refined version of (BC2).

THM 3.21 If A1, A2, . . . are pairwise independent and
∑

n P[An] = +∞ then∑n
m=1 1Am∑n
m=1 P[Am]

→ 1, a.s.

Proof: Convergence in probability follows from Chebyshev’s inequality. LetXk =
1Ak

and Sn =
∑

k≤nXk. Then by pairwise independence

Var[Sn] =
∑
k≤n

Var[Xk] ≤
∑
k≤n

E[X2
k ] =

∑
k≤n

E[Xk] =
∑
k≤n

P[Ak] = E[Sn],

using Xk ∈ {0, 1}. Then

P[|Sn − E[Sn]| > δE[Sn]] ≤ Var[Sn]

δ2E[Sn]2
≤ 1

δ2E[Sn]
→ 0,
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by assumption. In particular,
Sn

E[Sn]
→P 1.

We use a standard trick to obtain almost sure convergence. The idea is to take
subsequences, use (BC1), and sandwich the original sequence.)

1. Take
nk = inf{n : E[Sn] ≥ k2},

and let Tk = Snk
. Since E[Xn] ≤ 1 we have in particular k2 ≤ E[Tk] ≤

k2 + 1. Using Chebyshev again,

P[|Tk − E[Tk]| > δE[Tk]] ≤
1

δ2k2
,

which is summable so that, using (BC1) and the fact that δ is arbitrary,

Tk
E[Tk]

→ 1, a.s.

2. For nk ≤ n < nk+1, we have by monotonicity

Tk
E[Tk+1]

≤ Sn
E[Sn]

≤ Tk+1

E[Tk]

Finally, note that

E[Tk]

E[Tk+1]

Tk
E[Tk]

≤ Sn
E[Sn]

≤ Tk+1

E[Tk]

E[Tk+1]

E[Tk]
,

and
k2 ≤ E[Tk] ≤ E[Tk+1] ≤ (k + 1)2 + 1.

Since the ratio of the two extremes terms goes to 1, the ratio of the expecta-
tions goes to 1 and we are done.

We will see this argument again when we prove the strong law of large num-
bers.

EX 3.22 (Record values) Let X1, X2, . . . be a sequence of IID RVs with a contin-
uous DF F corresponding to, say, an individual’s times in a race. Let

Ak =

{
Xk > sup

j<k
Xj

}
,
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that is, that time k is a new record. Let Rn =
∑

m≤n 1Am , we will prove that

Rn
log n

→ 1, a.s.

Because F is continuous, there is no atom and P[Xj = Xk] = 0 for j 6= k.
Let Y n

1 > · · · > Y n
n be the sequence X1, . . . , Xn in decreasing order. By the IID

assumption, the permutation πn(i) = j ifXi = Y n
j is clearly uniform by symmetry.

In particular,

P[An] = P[πn(n) = 1] =
1

n
.

Moreover, for any m1 < m2, note that on Am2 the distribution of the relative
ordering of the Xis for i < m2 is unchanged by symmetry and therefore

P[Am1 ∩Am2 ]

P[Am2 ]
= P[Am1 ] =

1

m1
.

We have proved that the Ak’s are pairwise independent and that P[Ak] = 1/k.
Now use the fact that

n∑
i=1

1

i
∼ log n,

and the previous theorem. This proves the claim.
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