
Notes 5 : More on the a.s. convergence of sums

Math 733-734: Theory of Probability Lecturer: Sebastien Roch

References: [Dur10, Sections 2.5]; [Wil91, Section 14.7], [Shi96, Section IV.4],
[Dur10, Section 1.2].

1 Random series

1.1 Three-series theorem

We will give a second proof of the SLLN. This proof is based on random series
and gives more precise information in some cases.

EX 5.1 Note that ∑
n

1

n
diverges,

and∑
n

(−1)n+1 1

n
=
∑
m≥0

(
1

2m+ 1
− 1

2m+ 2

)
=
∑
m≥0

1

2m(2m+ 1)
converges,

in the sense that the partial sums converge. How about∑
n

Zn
n
,

where Zn ∈ {±1} are IID uniform? (Note that, with positive probability, you have
long stretches of ones. On the other hand, you have +1s and −1s roughly half of
the time.)

To answer the question, we prove:

THM 5.2 (Three-series theorem) Let X1, X2, . . . be independent. Let A > 0
and Yn = Xn1{|Xn|≤A}. In order for

∑
nXn to converge a.s., it is necessary and

sufficient that:
∞∑
n=1

P[|Xn| > A] < +∞, (1)

1
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∞∑
n=1

E[Yn] converges, (2)

and
∞∑
n=1

Var[Yn] < +∞. (3)

EX 5.3 (Continued) Take A > 1. Then Xn = Yn = n−1Zn and E[Yn] = 0 for
all n. Therefore it suffices to check (3). Note that∑

n

Var[Xn] =
∑
n

E[X2
n] =

∑
n

1

n2
< +∞.

1.2 Sufficiency

Proof: We claim it suffices to prove that∑
n

(Yn − E[Yn]) converges.

Indeed, suppose that this is the case, then by (2) it follows that∑
n

Yn converges.

By (1) and (BC1), ∑
n

Xn converges.

So we prove:

THM 5.4 (Zero-mean series theorem) LetX1, X2, . . . be independent with mean
0. If ∑

n

Var[Xn] < +∞

then Sn =
∑

k≤nXk converges a.s.

Proof: For M > 0, let

wM ≡ sup
n,m≥M

|Sn − Sm| ↓ w∞.

By a Cauchy-type argument it suffices to prove that, for all ε > 0,

P[w∞ > 2ε] = P[∩M{wM > 2ε}] = lim
M

P[wM > 2ε] = 0,

by continuity.
To argue about the sup we prove the following:
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THM 5.5 (Kolmogorov’s maximal inequality) LetX1, X2, . . . be independent with
0 mean and finite variance. Then

P
[

max
1≤k≤n

|Sk| ≥ x
]
≤ Var[Sn]

x2
.

Note that this is a strengthening of Chebyshev’s inequality for sums of independent
RVs.
Proof: The trick is to divide the event of interest into when it first occurs. Let

Ak = {|Sk| ≥ x but |Sj | < x for j < k}.

Then, using independence of Sk1Ak
and (Sn−Sk) and the fact that E[Sn−Sk] = 0,

E[S2
n] ≥

n∑
k=1

E[S2
n;Ak]

=

n∑
k=1

E[S2
k + 2Sk(Sn − Sk) + (Sn − Sk)2;Ak]

≥
n∑
k=1

E[S2
k ;Ak]

≥
n∑
k=1

x2P[Ak]

= x2P
[

max
1≤k≤n

|Sk| ≥ x
]
.

Going back to the previous proof, note that Kolmogorov’s maximal inequality
implies

P
[

max
M≤m≤N

|Sm − SM | > ε

]
≤ Var[SN − SM ]

ε2
≤
∑

m≥M+1 Var[Xm]

ε2
,

so taking a limit when N → +∞ then M → +∞ and using continuity

P

[
sup
m≥M

|Sm − SM | > ε

]
→ 0, as M → +∞.

Finally, note that

P[wM > 2ε] ≤ P

[
sup
m≥M

|Sm − SM | > ε

]
→ 0,

using |Sn − Sm| ≤ |Sn − SM |+ |Sm − SM |.
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1.3 Necessity

Proof: Suppose
∑

nXn converges. Then Xn → 0 and by (BC2), for all A > 0,
(1) holds and

∑
n Yn converges as well. We use symmetrization. If Z is a RV

and Z̃ is an independent copy. Then we let Z◦ = Z − Z̃. We will show below
that the convergence of a zero-mean, uniformly bounded random series implies the
convergence of the second moments. Then∑

n

Y ◦n converges =⇒
∑
n

Var[Yn] =
1

2

∑
n

Var[Y ◦n ] < +∞

=⇒
∑
n

(Yn − E[Yn]) converges

=⇒
∑
n

E[Yn] converges.

The statement above will follow from the following maximal inequality:

THM 5.6 Let X1, X2, . . . be independent with zero mean, finite variance and
P[Xi ≤ c] = 1 for some c > 0. Then

P
[

max
1≤k≤n

|Sk| ≥ x
]
≥ 1− (c+ x)2

Var[Sn]
.

Proof: Let A be the event above and define Ak as before. On the one hand, noting
that on Ak we have |Sk| ≤ c+ x and arguing as before,

E[S2
n;A] =

∑
k

E[S2
k + (Sn − S2

k);Ak]

≤ P[A]

(
(c+ x)2 +

n∑
k=1

E[X2
k ]

)
= P[A]

(
(c+ x)2 + E[S2

n]
)
.

On the other hand,

E[S2
n;A] = E[S2

n]− E[S2
n;Ac] ≥ E[S2

n]− x2P[Ac].

Rearranging gives the result.
Finally if we had

∑
n Var[Yn] = +∞, the previous inequality (used as before)

would give

P

[
sup
k≥M

|Sn − SM | > ε

]
= 1,

for all M > 0—a contradiction.
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1.4 Applications

1.4.1 A second proof of the SLLN

To see the connection between the convergence of series and the law of large num-
bers, we begin with the following lemma (whose proof is in the appendix).

LEM 5.7 (Kronecker’s lemma) If an ↑ +∞ and
∑

n xn/an converges then

1

an

n∑
m=1

xm → 0.

THM 5.8 (Strong law of large numbers) Let X1, X2, . . . be pairwise indepen-
dent IID with E|X1| < +∞. Let Sn =

∑
k≤nXk and µ = E[X1]. Then

Sn
n
→ µ, a.s.

Proof: We already proved that it suffices to show n−1Tn → µ where Yk =
Xk1{|Xk|≤k} and Tn =

∑
k≤n Yk, that E[Yk]→ µ, and that

+∞∑
i=1

Var[Yi]

i2
≤ E|X1| < +∞.

That implies, from Theorem 5.4 (or from the Three-Series Theorem with A > 2),∑
k

Yk − E[Yk]

k
converges a.s.

1.4.2 Rates of convergence

Under a stronger assumption, we have the following:

THM 5.9 (Rate of convergence) Let X1, X2, . . . be IID with E[X1] = µ < +∞
and Var[X1] = σ2 < +∞. Then Sn =

∑
k≤nXk satisfies

Sn − nµ
n1/2(log n)1/2+ε

=
n1/2

(log n)1/2+ε

(
Sn
n
− µ

)
→ 0, a.s.
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Proof: Take µ = 0 w.l.o.g. Define an = n1/2(log n)1/2+ε. Then

∑
n≥2

Var

[
Xn

an

]
=
∑
n≥2

σ2

n(log n)1+2ε
.

Recalling that ∫
1

x(log x)α
dx = (1− α)

1

(log x)α−1
+ C,

for α > 1 we get that the previous series is finite. Hence, from Theorem 5.4,∑
nXn/an converges and a−1n

∑
k≤nXk goes to 0.

2 Law of the iterated logarithm

Let (Xn)n be IID with E[X1] = 0 and Var[X1] = σ2 < +∞ and let Sn =∑
k≤nXk. Using random series results, we proved that

Sn√
n log1/2+ε n

→ 0, a.s.

(On the other hand, we will prove later that the distribution of n−1/2Sn converges
to a non-trivial limit.)

In fact:

THM 5.10 (Law of Iterated Logarithm (LIL)) Let (Xn)n be IID with E[X1] =
0 and Var[X1] = σ2 < +∞ and let Sn =

∑
k≤nXk. Then

lim sup
n

Sn√
2σ2n log logn

= 1, a.s.

We prove the result in a special case: assume from now on that X1 ∼ N(0, 1).
(The more general case uses Brownian motion and is described in [Dur10, Section
8.8].) But first:

2.1 Reminder: Normal distribution

Recall:

DEF 5.11 (Density) A RV X has a probability density function (PDF) fX : R →
[0 +∞) if

∀B ∈ B(R), P[X ∈ B] =

∫
B
fX(y)dy.
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Then, by Exercise 1.6.8, if E|h(X)| < +∞ then

E[h(X)] =

∫
h(x)fX(x)dx.

Then:

DEF 5.12 (Gaussian) A RV X has a normal distribution with mean µ and vari-
ance σ2 (denoted X ∼ N(µ, σ2)) if it has density

fX(x) =
1√

2πσ2
exp

(
−(x− µ)2

2σ2

)
.

Note in particular that(∫ +∞

−∞
fX(x)dx

)2

=

∫ +∞

−∞

∫ +∞

−∞

1

2πσ2
exp

(
−(x− µ)2 + (y − µ)2

2σ2

)
dxdy

=
1

2π

∫ +∞

−∞

∫ +∞

−∞
exp

(
− x̃

2 + ỹ2

2

)
dx̃dỹ

=
1

2π

∫ 2π

0

∫ +∞

0
exp

(
−r

2

2

)
rdrdθ

=
1

2π
2π

∫ +∞

0
exp (−u) du

= 1,

where we used polar coordinates on the third line. Also,

E[X − µ] =

∫ +∞

−∞
(x− µ)fX(x)dx

= σ

∫ +∞

−∞
z

1√
2π

exp

(
−z

2

2

)
dz

= 0,

by symmetry and, by linearity of expectation and using polar coordinates again,

Var[X] = E[(X − µ)2]

=
σ2

2

∫ +∞

−∞

∫ +∞

−∞
(x̃2 + ỹ2)

1

2π
exp

(
− x̃

2 + ỹ2

2

)
dx̃dỹ

=
σ2

2

∫ +∞

0
r2 exp

(
−r

2

2

)
rdr

= σ2
∫ +∞

0
u exp (−u) du,

= σ2,
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by integration by parts. That is, E[X] = µ and Var[X] = σ2.

Let X ∼ N(µ1, σ
2
1) and Y ∼ N(µ2, σ

2
2) be independent normal RVs. By our

convolution formula, the PDF of X + Y is

fX+Y (z) =

∫
fX(z − y)fY (y)dy

=

∫ +∞

−∞

1

2πσ1σ2
exp

(
−(z − y − µ1)2

2σ21
+

(y − µ2)2

2σ22

)
dy

= · · · = 1√
2π(σ21 + σ22)

exp

(
−(z − µ1 − µ2)2

2(σ21 + σ22)

)
,

that is, X + Y ∼ N(µ1 + µ2, σ
2
1 + σ22). (See [Dur10, Example 2.1.4] for the

computations.)

2.2 Proof of LIL in Gaussian case

We start with two lemmas of independent interest. First, because we are dealing
with a lim sup we will need a maximal inequality.

LEM 5.13 Let (Xn)n be independent and symmetric (that is, X1 and X1 have the
same distribution). Then for all a ∈ R

P
[

max
1≤k≤n

Sn > a

]
≤ 2P[Sn > a].

This is similar to Kolmogorov’s maximal inequality. However, we will get a
stronger bound in the Gaussian case below. First, we prove the lemma.
Proof: Let A be the set in bracket on the LHS and B be the set in bracket on the
RHS. Define

Ak = {Sk > a but Sj ≤ a, ∀j < k}.

Note that
P[B] ≥

∑
k≤n

P[Ak ∩B]. (4)

Moreover,

P[Ak ∩B] ≥ P[Ak ∩ {Sn ≥ Sk}]
= P[Ak]P[Sn − Sk ≥ 0]

≥ 1

2
P[Ak],

by symmetry. Plugging back into (4) gives the result.
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LEM 5.14 For x > 0,

(x−1 − x−3)e−x2/2 ≤
∫ +∞

x
e−y

2/2dy ≤ x−1e−x2/2.

Proof: By the change of variable y = x+ z and using e−z
2/2 ≤ 1∫ +∞

x
e−y

2/2dy ≤ e−x2/2
∫ +∞

0
e−xzdz = e−x

2/2x−1.

For the other direction, by differentiation∫ +∞

x
(1− 3y−4)e−y

2/2dy = (x−1 − x−3)e−x2/2.

We come back to the proof of the main theorem.
Proof: Define

h(n) =
√

2n log logn.

Upper bound. The upper bound follows from (BC1). Let K > 1 (close to 1)
and cn = Kh(Kn−1). In words we want to show that Sk/h(k) is smaller than K
eventually. By the lemmas above

P
[

max
k≤Kn

Sk > cn

]
≤ 2P[SKn > cn]

= 2P
[
SKn

Kn/2
>

cn

Kn/2

]
≤ 2

1√
2π

Kn/2

cn
exp

(
− c2n

2Kn

)
.

Note that

c2n
2Kn

= K log logKn−1 = K[log(n−1)+log logK] = log(n−1)K+log(logK)K .

For n large enough

P
[

max
k≤Kn

Sn > cn

]
≤ exp

(
− c2n

2Kn

)
=

1

(n− 1)K(logK)K
,

which is summable. By (BC1), eventually for Kn−1 ≤ k < Kn

Sk ≤ max
k≤Kn

Sn ≤ cn = Kh(Kn−1) ≤ Kh(k).



Lecture 5: More on the a.s. convergence of sums 10

Hence,

lim sup
k

Sk
h(k)

≤ K.

Lower bound. For the other direction, we use a trick similar to the head runs
problem. We divide time into big independent blocks. Let N > 0 large. By the
above lemma, for ε > 0

P
[
SNn+1 − SNn > (1− ε)h(Nn+1 −Nn)

]
≥ 1√

2π

(
y−1n − y−3n

)
e−y

2
n/2, (5)

where
yn = (1− ε)

√
2 log log(Nn+1 −Nn),

so that the RHS in (5) is of order n−(1−ε)
2

which sums to +∞. By (BC2) (by
independence) the event in bracket in (5) occurs i.o. Moreover, by the upper bound
argument

SNn > −2h(Nn),

a.s. for large enough n. Hence

SNn+1 > (1− ε)h(Nn+1 −Nn)− 2h(Nn),

for infinitely many n so that

lim sup
k

Sk
h(k)

≥ lim sup
n

SNn+1

h(Nn+1)

≥ (1− ε)
√

1− 1

N
− 2

√
1

N
,

up to logarithmic factors.
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A Proof of Kronecker’s lemma

Proof: Let bm =
∑m

k=1 xk/ak. Noting that

xm = am(bm − bm−1),

we have (setting a0 = b0 = 0)

1

an

n∑
m=1

xm =
1

an

(
n∑

m=1

ambm −
n∑

m=1

ambm−1

)

=
1

an

(
anbn +

n∑
m=1

am−1bm−1 −
n∑

m=1

ambm−1

)

= bn −
n∑

m=1

am − am−1
an

bm−1.

Since bn → b∞ < +∞ and the an’s are non-decreasing, the average on the RHS
converges to b∞. (Exercise.)

B St-Petersburg paradox

An important example:

EX 5.15 (St-Petersburg paradox) Consider an IID sequence with

P
[
X1 = 2j

]
= 2−j , ∀j ≥ 1.

Clearly E[X1] = +∞. Note that

P[|X1| ≥ n] = Θ

(
1

n

)
,

(indeed it is a geometric series and the sum is dominated by the first term) and
therefore we cannot apply the WLLN. Instead we apply the WLLN for triangular
arrays to a properly normalized sum. We take Xn,k = Xk and bn = n log2 n. We
check the two conditions. First

n∑
k=1

P[|Xn,k| > bn] = Θ

(
n

n log2 n

)
→ 0.

To check the second one, let X ′n,k = Xn,k1|Xn,k|≤bn and note

E[(X ′n,k)
2] =

log2 n+log2 log2 n∑
j=1

22j2−j ≤ 2 · 2log2 n+log2 log2 n = 2n log2 n.
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So
1

b2n

n∑
k=1

E[(X ′n,k)
2] =

2n2 log2 n

n2(log2 n)2
→ 0.

Finally,

an =

n∑
k=1

E[X ′n,k] = nE[X ′n,1] = n

log2 n+log2 log2 n∑
j=1

2j2−j = n(log2 n+log2 log2 n),

so that
Sn − an
bn

→P 0,

and
Sn

n log2 n
→P 1.

On the other hand, note that

P[|X1| ≥ Kn log2 n] = Ω

(
1

Kn log2 n

)
,

which is not summable. By (BC2), since K is arbitrary,

lim sup
n

Sn
n log2 n

= +∞, a.s.

More generally, using the random series results above (see [D]):

THM 5.16 Let (Xn)n be IID with E|X1| = +∞ and Sn =
∑

k≤nXk. Let an be
a sequence with an/n increasing. Then lim supn |Sn|/an = 0 or +∞ according
as
∑

n P[|X1| ≥ an] < +∞ or = +∞.


