Notes 5 : More on the a.s. convergence of sums

Math 733-734: Theory of Probability Lecturer: Sebastien Roch

References: [DurlO, Sections 2.5]; [Wil91, Section 14.7], [Shi96, Section IV.4],
[Durl0, Section 1.2].

1 Random series

1.1 Three-series theorem

We will give a second proof of the SLLN. This proof is based on random series
and gives more precise information in some cases.

EX 5.1 Note that 1
Z — diverges,
n
n

and
1 1 1 1
-1 n+1l = — _ — -
2T =2 <2m +1 2m+ 2) 2 om(2m + 1) 7B
n m>0 m>0

in the sense that the partial sums converge. How about
Zy,
P
n
n

where Z,, € {1} are IID uniform? (Note that, with positive probability, you have
long stretches of ones. On the other hand, you have +1s and —1s roughly half of
the time.)

To answer the question, we prove:

THM 5.2 (Three-series theorem) Let X1, Xo, ... be independent. Let A > 0
and Y, = Xnlqx,|<a}- In order for > n Xn to converge a.s., it is necessary and
sufficient that:

> P Xn| > A] < 400, (1)

n=1
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o0
Z E[Y,,] converges,
n=1

and

Z Var[Y,,] < +oc.
n=1

2)

3)

EX 5.3 (Continued) Take A > 1. Then X,, = Y,, = n~'Z, and E[Y;] = 0 for

all n. Therefore it suffices to check (3). Note that
1
— 21
D Var[X,] =) E[X7] =) — < Foo.
n n n

1.2 Sufficiency

Proof: We claim it suffices to prove that

Z(Yn — E[Y,]) converges.

n

Indeed, suppose that this is the case, then by (2) it follows that

g Y,, converges.
n

By (1) and (BC1),
Z X, converges.
n

So we prove:

THM 5.4 (Zero-mean series theorem) Let X1, Xo, ... be independent with mean

0. If
Z Var[X,] < +o0

then S, = .., X) converges a.s.

Proof: For M > 0, let

wy = sup  |Sp — Sl 4 Weo-
n,m>M

By a Cauchy-type argument it suffices to prove that, for all € > 0,

P[woo > 26] = P[QM{ZUM > 26}] = li]&nIP’[wM > 28] =0,

by continuity.
To argue about the sup we prove the following:
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THM 5.5 (Kolmogorov’s maximal inequality) Let X1, Xo, ... be independent with
0 mean and finite variance. Then

Var[S,,]

]P’[max |Sk]2x}§ 5
1<k<n x

Note that this is a strengthening of Chebyshev’s inequality for sums of independent
RVs.
Proof: The trick is to divide the event of interest into when it first occurs. Let

A = {’Sk‘ > x but ‘SJ| < zxzforj < k}

Then, using independence of S 1 4, and (S, —S}j) and the fact that E[S,,—S)] = 0,

E[S7] > ) E[Sy; Akl
k=1

= ) B[S} + 25k(Sn — Sk) + (Sn — Sk)?; Akl
k=1

> > B[S Ay
k=1

> 2?P[Ay)
k=1

= 2P [ max |Sg| > x} .
1<k<n

]
Going back to the previous proof, note that Kolmogorov’s maximal inequality
implies

B —_—
P[ I |SmSM|>e} < VarlSy = Su) _ Xmzars VarlXo
N - .

)

M<m<

so taking a limit when N — +oo then M — 400 and using continuity
P | sup |Sy, — Su|>¢e| =0, as M — +oo.
m>M
Finally, note that

Plwp > 2] <P

sup |Sm — Su| >¢e| — 0,
m>M

using |Sy, — S| < |Sn — Sum| + | Sm — Sl u
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1.3 Necessity

Proof: Suppose > X, converges. Then X, — 0 and by (BC2), for all A > 0,
(1) holds and ), Y,, converges as well. We use symmetrization. If Z is a RV
and Z is an independent copy. Then we let Z° = Z — Z. We will show below
that the convergence of a zero-mean, uniformly bounded random series implies the
convergence of the second moments. Then

Z Y” converges —> Z Varly, Z Var[Y,)] < +o0
- Z (Y,, — E[Y}]) converges
== ZE converges.

The statement above will follow from the following maximal inequality:

THM 5.6 Let X1, X>,... be independent with zero mean, finite variance and
P[X; < ¢] = 1 for some ¢ > 0. Then

Var[S,]

Proof: Let A be the event above and define Aj, as before. On the one hand, noting
that on Ay we have |S;| < ¢ + z and arguing as before,

2 Al = E[Sh + (Sn — Sp); Akl
k

< P[4] ((c + )% + znj E[X,z])

2
]P){max | Skl >x] >1— ——== (c+z)
1<k<n

k=1
=P[A] ((c+z)* +E[S2]).

On the other hand,
E[S>; A] = E[S]] — E[S2; A°] > E[S2] — 2’P[A°].

Rearranging gives the result. |
Finally if we had ), Var[Y;,] = +o0, the previous inequality (used as before)
would give

P [sup |Sn — Sw| > 8] =1,
k>M

for all M > 0—a contradiction.
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1.4 Applications
1.4.1 A second proof of the SLLN

To see the connection between the convergence of series and the law of large num-
bers, we begin with the following lemma (whose proof is in the appendix).

LEM 5.7 (Kronecker’s lemma) If a,, T 400 and ), xy/ay converges then
1 n
— Ty — 0.

THM 5.8 (Strong law of large numbers) Let X, Xo,... be pairwise indepen-
dent IID with E[X1| < +oc. Let Sy, = 3 o, Xy and pp = E[X1]. Then

Sn
— = U, a.s.
n

Proof: We already proved that it suffices to show n~'T;, — u where Y, =
Xilyx, <k and T, = 37 Vi, that E[Y}] — ., and that

X VarlYj]
Z 2'2
=1

That implies, from Theorem 5.4 (or from the Three-Series Theorem with A > 2),

< E’Xﬂ < +00.

Z Yy — E[Y%]

5 converges a.s.

k

1.4.2 Rates of convergence

Under a stronger assumption, we have the following:

THM 5.9 (Rate of convergence) Let X1, Xs,... be [ID with E[X] = p < 400
and Var[X1] = 02 < +oc. Then S,, = > k<n Xk satisfies

Sn —np B nl/? <Sn

nl/Q(log n)1/2+€ - (log n)1/2+5 - ,U) — 0, a.s.

n
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Proof: Take ;1 = 0 w.l.o.g. Define a,, = n'/?(logn)*/?>*<. Then

Xn o?
D Var [} =2 log ) ¥E

n>2 n>2

1 1
. dr=(1l-a)———
/az(logm)a v=(01-a) (log z)>—1 +C

for « > 1 we get that the previous series is finite. Hence, from Theorem 5.4,
>, Xn/a, converges and a;, ! > k<n Xk goes to 0. |

Recalling that

2 Law of the iterated logarithm

Let (X,), be IID with E[X;] = 0 and Var[X;] = ¢? < +oo and let S,, =
Y k<n Xk- Using random series results, we proved that

Sn

m — O, a.s.

(On the other hand, we will prove later that the distribution of n~/2S,, converges
to a non-trivial limit.)
In fact:

THM 5.10 (Law of Iterated Logarithm (LIL)) Ler (X,,),, be IID with E[X;]| =
0 and Var[X1] = 0% < +oc0 and let S, = > k<n Xk Then

Sn

lim sup =1, as.

n  \/20%nloglogn B

We prove the result in a special case: assume from now on that X; ~ N(0,1).
(The more general case uses Brownian motion and is described in [Dur10, Section
8.8].) But first:

2.1 Reminder: Normal distribution
Recall:

DEF 5.11 (Density) A RV X has a probability density function (PDF) fx : R —
[0 4 o0) if

VB € B(R), P[X € B] = /fo(y)dy.
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Then, by Exercise 1.6.8, if E|h(X)| < 400 then

E[h(X)] = / W) fx (2)de
Then:

DEF 5.12 (Gaussian) A RV X has a normal distribution with mean p and vari-
ance o (denoted X ~ N (u,0?)) if it has density

fx(x) =

Note in particular that
w)™+ (y —p)
</Oo fX(:c)dx> = /Oo /oo 53 CXP <— 5,7 >dxdy
1 400 pto0 ~2 ~2
= — / exp (—x ;y )di"dgj
27r +oo 2
= / exp < ) rdrdf

where we used polar coordinates on the third line. Also,

+oo
B - = [ - sl
_ g/_;”z&exp@f)dz

= 0,
by symmetry and, by linearity of expectation and using polar coordinates again,

Var[X] = E[(X

2 1 ~2 | ~2
= 02/ / (z +g2)%exp (—x —2Fy >d§:dg
2
= 02/ r? exp <—T2> rdr

= o / wexp (—u) du,
0

= 0'2’
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by integration by parts. That is, E[X| = p and Var[X] = o>

Let X ~ N(ui,02) and Y ~ N(uz,03) be independent normal RVs. By our
convolution formula, the PDF of X + Y is

frav(s) = / fx(z = w) fr(y)dy
+oo

1 (z—y—p)? | (y—p2)?
= exp | — + d
/_oo 2mo109 p< 20% 20% J

- ...:1)eXp<_<Z—m—ﬂ2>2),

2n(of + o3 2(0f + 03)

thatis, X +Y ~ N(ui + Mg,a% + U%). (See [Dur10, Example 2.1.4] for the
computations.)

2.2 Proof of LIL in Gaussian case

We start with two lemmas of independent interest. First, because we are dealing
with a lim sup we will need a maximal inequality.

LEM 5.13 Let (X,,),, be independent and symmetric (that is, X1 and X, have the
same distribution). Then for all a € R

P [ max S, > a] < 2P[S,, > a.
1<k<n

This is similar to Kolmogorov’s maximal inequality. However, we will get a
stronger bound in the Gaussian case below. First, we prove the lemma.
Proof: Let A be the set in bracket on the LHS and B be the set in bracket on the
RHS. Define

A ={Sk >abutS; <a, Vj <k}

Note that
P[B] > ) "P[A, N B]. (4)
k<n
Moreover,

by symmetry. Plugging back into (4) gives the result. |
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LEM 5.14 Forx > 0,
-1 -3\, —x2/2 e —y2/2 -1_—22/2
(7" =z 7)e < e dy<z ‘e .
X

Proof: By the change of variable y = = + 2 and using /2 <1

Fo0 2 2 +oo 2
/ eV 2y <e® /2/ e dy = e 2L,
T 0

For the other direction, by differentiation

oo 2 2
/ (1—3y eV /2dy = (7' —az73)e /2,

We come back to the proof of the main theorem.

Proof: Define
h(n) = v/2nloglogn.

Upper bound. The upper bound follows from (BC1). Let K > 1 (close to 1)
and ¢, = Kh(K™!). In words we want to show that Sy /h(k) is smaller than K
eventually. By the lemmas above

P [max Sy > cn} < 2P[Skn > ¢y
K<Kn

S Cn ]

=2P |:Kn/2 s Kn/2

5 1 K"/? e
< 2—— — .
T2 ¢y exp( 2Kn)

Note that

2
QCKnn = Kloglog K" ! = K[log(n—1)+loglog K] = log(n—1)X +log(log K)*.

For n large enough

c? 1
P Sn < - ) =
[52?5% ] C”] - ( 2K"> (n—= 1)< (log )X
which is summable. By (BC1), eventually for K"~! < k < K"

S < max S, <c¢, = Kh(K”_l) < Kh(k).
k<K™
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Hence, s
. k
limsup — < K.
v U h(k)
Lower bound. For the other direction, we use a trick similar to the head runs
problem. We divide time into big independent blocks. Let N > 0 large. By the
above lemma, fore > 0

P [Syni1 — Syn > (1 —e)h(N™! — N™)] > (' =y %) e ¥/2, (5)

5~
3

where

yn = (1 —)y/2loglog(N"+1 — N™),

so that the RHS in (5) is of order n~(1-9)% which sums to +00. By (BC2) (by
independence) the event in bracket in (5) occurs i.0. Moreover, by the upper bound

argument
Snn > —2h(N™),

a.s. for large enough n. Hence
Syn+1 > (1 —e)h(N™T — N™) — 2n(N™),

for infinitely many n so that

. Sk . SNn+1
1 —>1 —_—
1mksup hk) = 1mnsup BN
1 1
>(1- 1——=—24/—
T e
up to logarithmic factors. |
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A Proof of Kronecker’s lemma
Proof: Let b,,, = Y ;" | x1,/ax. Noting that

Tm = am(bm - bm—1)7

we have (setting ag = bg = 0)

1 1 n n
3 i (ot~ 3t
m=1 m=1 m=1
1 n n
= — (anbn + Z Am—1bm—1 — Z ambm1>
n m=1 m=1

n

j : am — Am—1
a

m=1 n

Since b, — boo < +00 and the a,’s are non-decreasing, the average on the RHS
converges to bs.. (Exercise.) [ |

B St-Petersburg paradox

An important example:

EX 5.15 (St-Petersburg paradox) Consider an IID sequence with
P[Xy=2]=27, vj>1

Clearly E[X1] = +o0. Note that

P> nl=0 ().

(indeed it is a geometric series and the sum is dominated by the first term) and
therefore we cannot apply the WLLN. Instead we apply the WLLN for triangular
arrays to a properly normalized sum. We take X, = X}, and b, = nlogyn. We
check the two conditions. First

S P Xkl > b] =0 < n ) )
P nlogyn

To check the second one, let X ,’1 = Xnkl| X1 < and note

logy n+log, logy n
E[( ék)Q] = Z 2%971 < 2. 9logantlogzlogan — op o0 .
=1
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So "
1 2n2logy n
S E[(X )] = 5—2 0.
b% ; [( n,k) ] n2(10g2n)2
Finally,
n log, n+log, logy 1
an = S BN, =nBIX, =0 S 20279 = n(logy n-+log, logy ),
k=1 j=1
so that
Sn —n —p 07
bn
and
Sh
nlogyn

On the other hand, note that

1
> g _—
P[|X1]| > Knlogyn| = Q < nlog2n> ,

which is not summable. By (BC2), since K is arbitrary,

. Sn,
lim sup =400, a.s.
n  nloggn

More generally, using the random series results above (see [D]):

THM 5.16 Let (X;,),, be IID with B[ X1| = +o00 and Sy, = ;. Xi. Let a, be
a sequence with a,, /n increasing. Then limsup,, |Sy,|/an = 0 or + oo according
as ), P[|X1] > an] < 400 0or = +o0.



