Notes 6 : First and second moment methods

Math 733-734: Theory of Probability Lecturer: Sebastien Roch

References: [Roc, Sections 2.1-2.3].
Recall:

THM 6.1 (Markov’s inequality) Let X be a non-negative random variable. Then,

forallb >0,
EX

P[X > b] < - (1)
THM 6.2 (Chebyshev’s inequality) Let X be a random variable with EX? <
+o0. Then, forall 5 > 0,

Var[X]

PX ~EX|> § < =

2)

1 First moment method

Recall that the expectation of a random variable has an elementary, yet handy prop-
erty: linearity. If random variables X7, . . ., X, defined on a joint probability space
have finite first moments

E[X1 4+ Xp] = E[Xq] + -+ + E[X], ©)

without any further assumption. In particular linearity holds whether or not the X;s
are independent.

1.1 The probabilistic method

A key technique of probabilistic combinatorics is the so-called the probabilistic
method. The idea is that one can establish the existence of an object satisfying a
certain property—without having to construct one explicitly. Instead one argues
that a randomly chosen object exhibits the given property with positive probability.
The following “obvious” observation, sometimes referred to as the first moment
principle, plays a key role in this context.
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THM 6.3 (First moment principle) Let X be a random variable with finite ex-
pectation. Then, for any p € R,

EX < p = P[X <] >0.

Proof: We argue by contradiction, assume EX < pand P[X < p] = 0. Write
{X < p} =, {X < p+1/n}. Thatimplies by monotonicity that, for any
e €(0,1), P[X < pu+ 1/n] < e for n large enough. Hence
p=EX
=E[X;X <p+1/n] +E[X; X > p+1/n]
>puPX <p+1/nl+ (p+1/n)(1 -PX < p+1/n])
> W

a contradiction. |
The power of this principle is easier to appreciate on an example.

EX 6.4 (Balancing vectors) Let vy, ..., Vv, be arbitrary unit vectors in R™. How
small can we make the norm of the combination

L1V + -+ XpVy

by appropriately choosing x1,...,x, € {—1,+1}? We claim that it can be as
small as \/n, for any collection of v;s. At first sight, this may appear to be a
complicated geometry problem. But the proof is trivial once one thinks of choosing
the x;s at random. Let X1,...,X,, be independent random variables uniformly
distributed in {—1,+1}. Then

]EHXIVI 4 XnVnH2 = K ZXinVZ' "Vj
/L'hj

= ZE[Xinvi - V4] 4)
2%

= ZVZ' ©Vy E[XZXJ]
i,J

= > vl
%

= ’n/’

where we used the linearity of expectation in (4). But note that a discrete random
variable Z = || X1v1 + - - + X, vy ||? with expectation EZ = n must take a value
< n with positive probability by the first moment principle (Theorem 6.3). In other
words, there must be a choice of X;s such that Z < n. That proves the claim.
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1.2 Union bound

Markov’s inequality (THM 6.1) can be interpreted as a quantitative version of the
first moment principle (THM 6.3). In this context, it is often stated in the following
special form.

THM 6.5 (First moment method) If X is a non-negative, integer-valued random

variable, then
PX > 0] <EX. &)

Proof: Take b = 1 in Markov’s inequality (Theorem 6.1). |
In words THM 6.3 implies that, if a non-negative integer-valued random variable
X has expectation smaller than 1, then its value is 0 with positive probability.
THM 6.5 adds: if X has “small” expectation, then its value is O with “large” prob-
ability. This simple fact is typically used in the following manner: one wants to
show that a certain “bad event” does not occur with probability approaching 1; the
random variable X then counts the number of such “bad events.” See the examples
below. In that case, X is a sum of indicators and THM 6.5 reduces to the standard
union bound, also known as Boole’s inequality.

COR 6.6 Let By, = A1 U---U A, where A1, ..., A is a collection of events.
Then, letting
i

we have
P[Bn] < pim.

In particular, if {1, — 0 then P[B,,] — 0.

Proof: This is of course a fundamental property of probability measures. (Or take
X =)>,14,inTHM6.5.) ]

Applications of THM 6.3 and 6.5 in the probabilistic method are referred to as
the first moment method. We give another example in the next section.

1.3 Random permutations: longest increasing subsequence

In this section, we bound the expected length of a longest increasing subsequence
in a random permutation. Let o, be a uniformly random permutation of [n] :=
{1,...,n} and let L,, be the length of a longest increasing subsequence of o,,.

CLAIM 6.7
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Proof: We first prove that

lim sup % <e,
n—o00 n
which implies half of the claim. Bounding the expectation of L,, is not straightfor-
ward as it is the expectation of a maximum. A natural way to proceed is to find a
value ¢ for which P[L,, > /] is “small.” More formally, we bound the expectation
as follows

ELy, <LP[Ly, <]+ nP[L, > ] <L+ nP[L, > {], (6)

for an ¢ chosen below. To bound the probability on the r.h.s., we appeal to the
first moment method by letting X, be the number of increasing subsequences of
length £. We also use the indicator trick, i.e., we think of X, as a sum of indicators
over subsequences (not necessarily increasing) of length ¢. There are (?) such
subsequences, each of which is increasing with probability 1/¢!. Note that these
subsequences are not independent. Nevertheless, by the linearity of expectation

and the first moment method,

1/n nt nt e\/n 2
P[L, > ¢ =P[X,, > 0] <EX, = €!<€> < 02 = @[/ < < \[) )

IN

where we used a standard bound on factorials. Note that, in order for this bound
to go to 0, we need ¢ > ey/n. The first claim follows by taking £ = (1 + d)e/n
in (6), for an arbitrarily small § > 0.

For the other half of the claim, we show that

EL,
>

1.

NZD

This part does not rely on the first moment method (and may be skipped). We seek
a lower bound on the expected length of a longest increasing subsequence. The
proof uses the following two ideas. First observe that there is a natural symme-
try between the lengths of the longest increasing and decreasing subsequences—
they are identically distributed. Moreover if a permutation has a “short” longest
increasing subsequence, then intuitively it must have a “long” decreasing subse-
quence, and vice versa. Combining these two observations gives a lower bound
on the expectation of L,,. Formally, let D,, be the length of a longest decreasing
subsequence. By symmetry and the arithmetic mean-geometric mean inequality,

note that
L,+D,
2

EL,=E > E+/Ly,Dy,.
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We show that L, D, > n, which proves the claim. We use a clever combinatorial
) be the length of a longest increasing subsequence ending at
position k, and similarly for ng). It suffices to show that the pairs (L%k), D,gk)),
1 < k < n are distinct. Indeed, noting that lek) < L, and D,(lk) < D,, the
number of pairs in [L,,]| x [D,,] is at most L,, D,, which must then be at least n. Let
1<j<k<n Ifo,(k) > 0,(j) then we see that L%k) > LS) by appending
on (k) to the subsequence ending at position j achieving L%j ). The opposite holds
for the decreasing case, which implies that (L,(f ), DY )) and (Lq(qk), Dék)) must be
distinct. This combinatorial argument is known as the Erdos-Szekeres theorem.
That concludes the proof of the second claim. n

argument. Let Lﬁf

2 Second moment method

The first moment method gives an upper bound on the probability that a non-
negative, integer-valued random variable is positive—provided its expectation is
small enough. In this section we seek a lower bound on that probability. We first
note that a large expectation does not suffice in general. Say X, is n? with prob-
ability 1/n, and 0 otherwise. Then EX,, = n — +oo, yet P[X,, > 0] — 0.
That is, although the expectation diverges, the probability that X, is positive can
be arbitrarily small.

So we turn to the second moment. Intuitively the basis for the so-called second
moment method is that, if the expectation of X, is large and its variance is rela-
tively small, then we can bound the probability that X, is close to 0. As we will
see in applications, the first and second moment methods often work hand-in-hand.

2.1 Paley-Zygmund inequality

As an immediate corollary of Chebyshev’s inequality (THM 6.2), we get a first
version of the so-called second moment method: if the standard deviation of X is
less than its expectation, then the probability that X is O is bounded away from 1.
Formally, let X be a non-negative, integer-valued random variable (not identically
zero). Then

Var[X]
(EX)>"

PX >0/>1-— (7
Indeed, by (2),

Var[X]
(EX)?"

PX = 0] < P[|X — EX| > EX] <
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The following tail inequality, a simple application of Cauchy-Schwarz, leads
to an improved version of the second moment method.

THM 6.8 (Paley-Zygmund inequality) Let X be a non-negative random vari-
able. Forall 0 < 6 < 1,

2
P[X > 0EX] > (1 — 6)? g@] . (8)
Proof: We have
EX = E[X1ix<sex)) +EXTix>mxy]
< OEX + /E[X2P[X > fEX],
where we used Cauchy-Schwarz. Rearranging gives the result. |

As an immediate application:

THM 6.9 (Second moment method) Let X be a non-negative random variable
(not identically zero). Then

(EX)*
P[X > 0] > EX2] 9)
Proof: Take 6 | 0 in (8). [
Since
(EX)? Var[X]
E[X2] ~ = (EX)2+ Var[X]’

we see that (9) is stronger than (7). We typically apply the second moment method
to a sequence of random variables (X,,). The previous theorem gives a uniform
lower bound on the probability that {X,, > 0} when E[X2] < C(E[X,])? for
some C' > 0.

Just like the first moment method, the second moment method is often applied
to a sum of indicators.

COR 6.10 Let B, = A1 U---U A, where Aq, ..., Ay, is a collection of events.
Write i ~ j ifi # j and A; and A; are not independent. Then, letting

Hm 2= Z]P)[Al]v Tm = ZP[A’L N Aj]7
7 i~]

where the second sum is over ordered pairs, we have lim,, P[B,,] > 0 whenever
pm — +oo and y,, < Cu2, for some C > 0. If moreover vy, = o(u2,) then
lim,, P[B,,] = 1.
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Proof: Take X := ), 14, in the second moment method (THM 6.9). Note that
Var[X]| = Z Var[l4,] + Z Cov[la,, 14,],
( i#j
where
Var[la,] = E[(14,)%] - (E[14,])? <P[A4],

and, if A; and A; are independent,
Cov([la,;, 14,] =0,
whereas, if 7 ~ 7,

COV[ILAZ,, ]lAj] = E[]lAillA].] — E[ILAZ,]E[]IA].] < P[4;N Aj}.

Hence
VarlX] _pim+vm 1 m
3 = 2 =t 5
(EX) Hin ftm R
Noting
(EX)? (EX)? B 1
E[X2  (EX)%+ Var[X] 1+ Var[X]/(EX)?’
and applying THM 6.9 gives the result. |

We give an application of the second moment method in the section.

2.2 Erdos-Rényi random graph: small subgraphs

We start with some definitions.

Definitions An undirected graph (or graph for short) is a pair G = (V, E) where
V' is the set of vertices (or nodes or sites) and

E C {{u,v} : u,v €V},

is the set of edges (or bonds). A subgraph of G = (V, E) is a graph G’ = (V', E’)
with V! C V and E' C E. A subgraph containing all possible non-loop edges
between its vertices is called a complete subgraph or clique.

We consider here random graphs. The Erdds-Rényi random graph is defined as
follows.

DEF 6.11 (Erdos-Rényi graphs) Let V = [n] and p € [0,1]. The Erdos-Rényi
graph G = (V, E) on n vertices with density p is defined as follows: for each pair
x # yinV, the edge {x,y} is in E with probability p independently of all other
edges. We write G ~ G, , and we denote the corresponding measure by P, ,.
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Threshold phenomena are common in random graphs. Formally, a threshold
function for a graph property P is a function r(n) such that

0, ifp, <r(n)

lim P G, has property P| =
m P, 5, [G has property P] {17 i py > (),

where, under P, ,,,, G,, ~ Gy, is an Erdos-Rényi graph with n vertices and
density p,. In this section, we first illustrate this definition on the clique number.

Cliques Let w(G) be the cliqgue number of a graph G, i.e., the size of its largest
clique.

CLAIM 6.12 The property w(G) > 4 has threshold function n=2/3.

Proof: Let X, be the number of 4-cliques in the Erdos-Rényi graph G, ~ Gy, ..
Then, noting that there are (;L) = 6 edges in a 4-clique,

n

B X = (|

)p?; — o(mhl),

which goes to 0 when p,, < n~2/3. Hence the first moment method (THM 6.5)
gives one direction.

For the other direction, we apply the second moment method for sums of indi-
cators, COR 6.10. For an enumeration S1, . . ., Sy, of the 4-tuples of vertices in G,
let Aq,..., A, be the events that the corresponding 4-cliques are present. By the
calculation above we have i, = ©(n*p?) which goes to +oco when p;, >> n=2/3,
Also p2, = O(n®pl?) so it suffices to show that 7, = o(n®p.?). Note that two
4-cliques with disjoint edge sets (but possibly sharing one vertex) are independent.

Suppose .S; and \S; share 3 vertices. Then
Prp, [A; | Aj] = pi?

as the event A; implies that all edges between three of the vertices in \S; are present,
and there are 3 edges between the remaining vertex and the rest of .S;. Similarly if
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1S; N .Sj| =2, Ppp, [Ai | Aj] = p3. Putting these together we get

Ym = Z P pn [A5] Prp, [Ai | Aj]

i~vj

= (@ ](a)omame ()(") )

= 0(n°p)) +O(n°p})

8,12 8,12
n n

n pn n pn
8, 12

= o(n’p,’)
= o(u,),

where we used that p,, > n~%/3 (so that for example n3p3 > 1). COR 6.10 gives
the result. ]
Roughly speaking, the first and second moments suffice to pinpoint the threshold
in this case because the indicators in X,, are “mostly” pairwise independent and,
as a result, the sum is concentrated around its mean.
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