
Notes 6 : First and second moment methods

Math 733-734: Theory of Probability Lecturer: Sebastien Roch

References: [Roc, Sections 2.1-2.3].
Recall:

THM 6.1 (Markov’s inequality) LetX be a non-negative random variable. Then,
for all b > 0,

P[X ≥ b] ≤ EX
b
. (1)

THM 6.2 (Chebyshev’s inequality) Let X be a random variable with EX2 <
+∞. Then, for all β > 0,

P[|X − EX| > β] ≤ Var[X]

β2
. (2)

1 First moment method

Recall that the expectation of a random variable has an elementary, yet handy prop-
erty: linearity. If random variablesX1, . . . , Xn defined on a joint probability space
have finite first moments

E[X1 + · · ·+Xn] = E[X1] + · · ·+ E[Xn], (3)

without any further assumption. In particular linearity holds whether or not theXis
are independent.

1.1 The probabilistic method

A key technique of probabilistic combinatorics is the so-called the probabilistic
method. The idea is that one can establish the existence of an object satisfying a
certain property—without having to construct one explicitly. Instead one argues
that a randomly chosen object exhibits the given property with positive probability.
The following “obvious” observation, sometimes referred to as the first moment
principle, plays a key role in this context.

1



Lecture 6: First and second moment methods 2

THM 6.3 (First moment principle) Let X be a random variable with finite ex-
pectation. Then, for any µ ∈ R,

EX ≤ µ =⇒ P[X ≤ µ] > 0.

Proof: We argue by contradiction, assume EX ≤ µ and P[X ≤ µ] = 0. Write
{X ≤ µ} =

⋂
n≥1{X < µ + 1/n}. That implies by monotonicity that, for any

ε ∈ (0, 1), P[X < µ+ 1/n] < ε for n large enough. Hence

µ ≥ EX
= E[X;X < µ+ 1/n] + E[X;X ≥ µ+ 1/n]

≥ µP[X < µ+ 1/n] + (µ+ 1/n)(1− P[X < µ+ 1/n])

> µ,

a contradiction.
The power of this principle is easier to appreciate on an example.

EX 6.4 (Balancing vectors) Let v1, . . . ,vn be arbitrary unit vectors in Rn. How
small can we make the norm of the combination

x1v1 + · · ·+ xnvn

by appropriately choosing x1, . . . , xn ∈ {−1,+1}? We claim that it can be as
small as

√
n, for any collection of vis. At first sight, this may appear to be a

complicated geometry problem. But the proof is trivial once one thinks of choosing
the xis at random. Let X1, . . . , Xn be independent random variables uniformly
distributed in {−1,+1}. Then

E‖X1v1 + · · ·+Xnvn‖2 = E

∑
i,j

XiXjvi · vj


=

∑
i,j

E[XiXjvi · vj ] (4)

=
∑
i,j

vi · vj E[XiXj ]

=
∑
i

‖vi‖2

= n,

where we used the linearity of expectation in (4). But note that a discrete random
variable Z = ‖X1v1 + · · ·+Xnvn‖2 with expectation EZ = n must take a value
≤ n with positive probability by the first moment principle (Theorem 6.3). In other
words, there must be a choice of Xis such that Z ≤ n. That proves the claim.
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1.2 Union bound

Markov’s inequality (THM 6.1) can be interpreted as a quantitative version of the
first moment principle (THM 6.3). In this context, it is often stated in the following
special form.

THM 6.5 (First moment method) IfX is a non-negative, integer-valued random
variable, then

P[X > 0] ≤ EX. (5)

Proof: Take b = 1 in Markov’s inequality (Theorem 6.1).
In words THM 6.3 implies that, if a non-negative integer-valued random variable
X has expectation smaller than 1, then its value is 0 with positive probability.
THM 6.5 adds: if X has “small” expectation, then its value is 0 with “large” prob-
ability. This simple fact is typically used in the following manner: one wants to
show that a certain “bad event” does not occur with probability approaching 1; the
random variableX then counts the number of such “bad events.” See the examples
below. In that case, X is a sum of indicators and THM 6.5 reduces to the standard
union bound, also known as Boole’s inequality.

COR 6.6 Let Bm = A1 ∪ · · · ∪ Am, where A1, . . . , Am is a collection of events.
Then, letting

µm :=
∑
i

P[Ai],

we have
P[Bm] ≤ µm.

In particular, if µm → 0 then P[Bm]→ 0.

Proof: This is of course a fundamental property of probability measures. (Or take
X =

∑
i 1Ai in THM 6.5.)

Applications of THM 6.3 and 6.5 in the probabilistic method are referred to as
the first moment method. We give another example in the next section.

1.3 Random permutations: longest increasing subsequence

In this section, we bound the expected length of a longest increasing subsequence
in a random permutation. Let σn be a uniformly random permutation of [n] :=
{1, . . . , n} and let Ln be the length of a longest increasing subsequence of σn.

CLAIM 6.7
ELn = Θ(

√
n).
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Proof: We first prove that

lim sup
n→∞

ELn√
n
≤ e,

which implies half of the claim. Bounding the expectation of Ln is not straightfor-
ward as it is the expectation of a maximum. A natural way to proceed is to find a
value ` for which P[Ln ≥ `] is “small.” More formally, we bound the expectation
as follows

ELn ≤ `P[Ln < `] + nP[Ln ≥ `] ≤ `+ nP[Ln ≥ `], (6)

for an ` chosen below. To bound the probability on the r.h.s., we appeal to the
first moment method by letting Xn be the number of increasing subsequences of
length `. We also use the indicator trick, i.e., we think of Xn as a sum of indicators
over subsequences (not necessarily increasing) of length `. There are

(
n
`

)
such

subsequences, each of which is increasing with probability 1/`!. Note that these
subsequences are not independent. Nevertheless, by the linearity of expectation
and the first moment method,

P[Ln ≥ `] = P[Xn > 0] ≤ EXn =
1

`!

(
n

`

)
≤ n`

(`!)2
≤ n`

e2[`/e]2`
≤
(
e
√
n

`

)2`

,

where we used a standard bound on factorials. Note that, in order for this bound
to go to 0, we need ` > e

√
n. The first claim follows by taking ` = (1 + δ)e

√
n

in (6), for an arbitrarily small δ > 0.
For the other half of the claim, we show that

ELn√
n
≥ 1.

This part does not rely on the first moment method (and may be skipped). We seek
a lower bound on the expected length of a longest increasing subsequence. The
proof uses the following two ideas. First observe that there is a natural symme-
try between the lengths of the longest increasing and decreasing subsequences—
they are identically distributed. Moreover if a permutation has a “short” longest
increasing subsequence, then intuitively it must have a “long” decreasing subse-
quence, and vice versa. Combining these two observations gives a lower bound
on the expectation of Ln. Formally, let Dn be the length of a longest decreasing
subsequence. By symmetry and the arithmetic mean-geometric mean inequality,
note that

ELn = E
[
Ln +Dn

2

]
≥ E

√
LnDn.
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We show that LnDn ≥ n, which proves the claim. We use a clever combinatorial
argument. Let L(k)

n be the length of a longest increasing subsequence ending at
position k, and similarly for D(k)

n . It suffices to show that the pairs (L
(k)
n , D

(k)
n ),

1 ≤ k ≤ n are distinct. Indeed, noting that L(k)
n ≤ Ln and D(k)

n ≤ Dn, the
number of pairs in [Ln]× [Dn] is at most LnDn which must then be at least n. Let
1 ≤ j < k ≤ n. If σn(k) > σn(j) then we see that L(k)

n > L
(j)
n by appending

σn(k) to the subsequence ending at position j achieving L(j)
n . The opposite holds

for the decreasing case, which implies that (L
(j)
n , D

(j)
n ) and (L

(k)
n , D

(k)
n ) must be

distinct. This combinatorial argument is known as the Erdös-Szekeres theorem.
That concludes the proof of the second claim.

2 Second moment method

The first moment method gives an upper bound on the probability that a non-
negative, integer-valued random variable is positive—provided its expectation is
small enough. In this section we seek a lower bound on that probability. We first
note that a large expectation does not suffice in general. Say Xn is n2 with prob-
ability 1/n, and 0 otherwise. Then EXn = n → +∞, yet P[Xn > 0] → 0.
That is, although the expectation diverges, the probability that Xn is positive can
be arbitrarily small.

So we turn to the second moment. Intuitively the basis for the so-called second
moment method is that, if the expectation of Xn is large and its variance is rela-
tively small, then we can bound the probability that Xn is close to 0. As we will
see in applications, the first and second moment methods often work hand-in-hand.

2.1 Paley-Zygmund inequality

As an immediate corollary of Chebyshev’s inequality (THM 6.2), we get a first
version of the so-called second moment method: if the standard deviation of X is
less than its expectation, then the probability that X is 0 is bounded away from 1.
Formally, let X be a non-negative, integer-valued random variable (not identically
zero). Then

P[X > 0] ≥ 1− Var[X]

(EX)2
. (7)

Indeed, by (2),

P[X = 0] ≤ P[|X − EX| ≥ EX] ≤ Var[X]

(EX)2
.



Lecture 6: First and second moment methods 6

The following tail inequality, a simple application of Cauchy-Schwarz, leads
to an improved version of the second moment method.

THM 6.8 (Paley-Zygmund inequality) Let X be a non-negative random vari-
able. For all 0 < θ < 1,

P[X ≥ θEX] ≥ (1− θ)2 (EX)2

E[X2]
. (8)

Proof: We have

EX = E[X1{X<θEX}] + E[X1{X≥θEX}]

≤ θEX +
√
E[X2]P[X ≥ θEX],

where we used Cauchy-Schwarz. Rearranging gives the result.
As an immediate application:

THM 6.9 (Second moment method) Let X be a non-negative random variable
(not identically zero). Then

P[X > 0] ≥ (EX)2

E[X2]
. (9)

Proof: Take θ ↓ 0 in (8).
Since

(EX)2

E[X2]
= 1− Var[X]

(EX)2 + Var[X]
,

we see that (9) is stronger than (7). We typically apply the second moment method
to a sequence of random variables (Xn). The previous theorem gives a uniform
lower bound on the probability that {Xn > 0} when E[X2

n] ≤ C(E[Xn])2 for
some C > 0.

Just like the first moment method, the second moment method is often applied
to a sum of indicators.

COR 6.10 Let Bm = A1 ∪ · · · ∪Am, where A1, . . . , Am is a collection of events.
Write i ∼ j if i 6= j and Ai and Aj are not independent. Then, letting

µm :=
∑
i

P[Ai], γm :=
∑
i∼j

P[Ai ∩Aj ],

where the second sum is over ordered pairs, we have limm P[Bm] > 0 whenever
µm → +∞ and γm ≤ Cµ2m for some C > 0. If moreover γm = o(µ2m) then
limm P[Bm] = 1.
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Proof: Take X :=
∑

i 1Ai in the second moment method (THM 6.9). Note that

Var[X] =
∑
i

Var[1Ai ] +
∑
i 6=j

Cov[1Ai ,1Aj ],

where
Var[1Ai ] = E[(1Ai)

2]− (E[1Ai ])
2 ≤ P[Ai],

and, if Ai and Aj are independent,

Cov[1Ai ,1Aj ] = 0,

whereas, if i ∼ j,

Cov[1Ai ,1Aj ] = E[1Ai1Aj ]− E[1Ai ]E[1Aj ] ≤ P[Ai ∩Aj ].

Hence
Var[X]

(EX)2
≤ µm + γm

µ2m
=

1

µm
+
γm
µ2m

.

Noting
(EX)2

E[X2]
=

(EX)2

(EX)2 + Var[X]
=

1

1 + Var[X]/(EX)2
,

and applying THM 6.9 gives the result.
We give an application of the second moment method in the section.

2.2 Erdös-Rényi random graph: small subgraphs

We start with some definitions.

Definitions An undirected graph (or graph for short) is a pair G = (V,E) where
V is the set of vertices (or nodes or sites) and

E ⊆ {{u, v} : u, v ∈ V },

is the set of edges (or bonds). A subgraph of G = (V,E) is a graph G′ = (V ′, E′)
with V ′ ⊆ V and E′ ⊆ E. A subgraph containing all possible non-loop edges
between its vertices is called a complete subgraph or clique.

We consider here random graphs. The Erdös-Rényi random graph is defined as
follows.

DEF 6.11 (Erdös-Rényi graphs) Let V = [n] and p ∈ [0, 1]. The Erdös-Rényi
graph G = (V,E) on n vertices with density p is defined as follows: for each pair
x 6= y in V , the edge {x, y} is in E with probability p independently of all other
edges. We write G ∼ Gn,p and we denote the corresponding measure by Pn,p.
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Threshold phenomena are common in random graphs. Formally, a threshold
function for a graph property P is a function r(n) such that

lim
n

Pn,pn [Gn has property P ] =

{
0, if pn � r(n)

1, if pn � r(n),

where, under Pn,pn , Gn ∼ Gn,pn is an Erdös-Rényi graph with n vertices and
density pn. In this section, we first illustrate this definition on the clique number.

Cliques Let ω(G) be the clique number of a graph G, i.e., the size of its largest
clique.

CLAIM 6.12 The property ω(G) ≥ 4 has threshold function n−2/3.

Proof: Let Xn be the number of 4-cliques in the Erdös-Rényi graph Gn ∼ Gn,pn .
Then, noting that there are

(
4
2

)
= 6 edges in a 4-clique,

En,pn [Xn] =

(
n

4

)
p6n = Θ(n4p6n),

which goes to 0 when pn � n−2/3. Hence the first moment method (THM 6.5)
gives one direction.

For the other direction, we apply the second moment method for sums of indi-
cators, COR 6.10. For an enumeration S1, . . . , Sm of the 4-tuples of vertices inGn,
let A1, . . . , Am be the events that the corresponding 4-cliques are present. By the
calculation above we have µm = Θ(n4p6n) which goes to +∞ when pn � n−2/3.
Also µ2m = Θ(n8p12n ) so it suffices to show that γm = o(n8p12n ). Note that two
4-cliques with disjoint edge sets (but possibly sharing one vertex) are independent.
Suppose Si and Sj share 3 vertices. Then

Pn,pn [Ai |Aj ] = p3n,

as the eventAj implies that all edges between three of the vertices in Si are present,
and there are 3 edges between the remaining vertex and the rest of Si. Similarly if
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|Si ∩ Sj | = 2, Pn,pn [Ai |Aj ] = p5n. Putting these together we get

γm =
∑
i∼j

Pn,pn [Aj ]Pn,pn [Ai |Aj ]

=

(
n

4

)
p6n

[(
4

3

)
(n− 4)p3n +

(
4

2

)(
n− 4

2

)
p5n

]
= O(n5p9n) +O(n6p11n )

= O

(
n8p12n
n3p3n

)
+O

(
n8p12n
n2pn

)
= o(n8p12n )

= o(µ2m),

where we used that pn � n−2/3 (so that for example n3p3n � 1). COR 6.10 gives
the result.
Roughly speaking, the first and second moments suffice to pinpoint the threshold
in this case because the indicators in Xn are “mostly” pairwise independent and,
as a result, the sum is concentrated around its mean.
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