
Notes 7 : Concentration inequalities

Math 733-734: Theory of Probability Lecturer: Sebastien Roch

References: [Roc, Sections 2.4].
Recall:

THM 7.1 (Markov’s inequality) LetX be a non-negative random variable. Then,
for all b > 0,

P[X ≥ b] ≤ EX
b
. (1)

Proof:
EX ≥ E[X;X ≥ b] ≥ E[b;X ≥ b] = bP[X ≥ b].

THM 7.2 (Chebyshev’s inequality) Let X be a random variable with EX2 <
+∞. Then, for all β > 0,

P[|X − EX| > β] ≤ Var[X]

β2
. (2)

Proof: This follows immediately by applying (1) to |X − EX|2 with b = β2.
We will also need the following lemma. In words, conditioning on an indepen-

dent RV is equivalent to fixing its value. Note that independence plays a crucial
role here. See Example 5.1.5 in [D] for a proof.

LEM 7.3 (Conditioning on an independent RV) SupposeX and Y are indepen-
dent. Let φ be a function with E|φ(X,Y )| < +∞ and let g(x) = E(φ(x, Y )).
Then,

E(φ(X,Y )|X) = g(X).

1 Chernoff-Cramér method

Chebyshev’s inequality (THM 7.2) gives a bound on the concentration around the
mean of a square integrable random variable that is, in general, best possible. In-
deed take X to be µ + bσ or µ − bσ with probability (2b2)−1 respectively, and µ
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otherwise. Then EX = µ, VarX = σ2, and for β = bσ,

P[|X − EX| ≥ β] = P[|X − EX| = β] =
1

b2
=

VarX

β2
.

However, in many cases, much stronger bounds can be derived.
In this section we discuss the Chernoff-Cramér method, which produces ex-

ponential tail inequalities, provided the moment-generating function is finite in a
neighborhood of 0.

DEF 7.4 (Moment-generating function) The moment-generating function of X
is the function

MX(s) = E
[
esX
]
,

defined for all s ∈ R where it is finite, which includes at least s = 0.

1.1 Tail bounds via the moment-generating function

We derive a general tail inequality first and then illustrate it on several standard
cases.

Chernoff-Cramér bound Under a finite variance, squaring within Markov’s in-
equality (THM 7.1) produces Chebyshev’s inequality (THM 7.2). This “boosting”
can be pushed further when stronger integrability conditions hold.

THM 7.5 (Chernoff-Cramér bound) Assume X is a centered random variable
such that MX(s) < +∞ for s ∈ (−s0, s0) for some s0 > 0. For any β > 0 and
s > 0,

P[X ≥ β] ≤ exp [−{sβ −ΨX(s)}] , (3)

where

ΨX(s) = logMX(s),

is the cumulant-generating function of X .

Proof: Exponentiating within Markov’s inequality gives, for any β > 0 and s > 0,

P[X ≥ β] = P[esX ≥ esβ] ≤ MX(s)

esβ
= exp [−{sβ −ΨX(s)}] .
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EX 7.6 (Gaussian random variables) Let X ∼ N(0, ν) where ν > 0 is the vari-
ance. By Chebyshev’s inequality (THM 7.2)

P[|X| ≥ β] ≤ ν

β2
. (4)

On the other hand, note that

MX(s) =

∫ +∞

−∞
esx

1√
2πν

e−
x2

2ν dx

=

∫ +∞

−∞
e
s2ν
2

1√
2πν

e−
(x−sν)2

2ν dx

= exp

(
s2ν

2

)
,

so that straightforward calculus gives for β > 0

sup
s>0

(sβ − s2ν/2) =
β2

2ν
, (5)

achieved at sβ = β/ν. Plugging this into (3) leads for β > 0 to the bound

P[X ≥ β] ≤ exp

(
−β

2

2ν

)
. (6)

By symmetry

P[|X| ≥ β] ≤ 2 exp

(
−β

2

2ν

)
.

which is much sharper than Chebyshev’s inequality for large β—compare to (4).

As a second illustration, we consider simple random walk on Z.

THM 7.7 (Chernoff bound for simple random walk on Z) LetZ1, . . . , Zn be in-
dependent {−1, 1}-valued random variables with P[Zi = 1] = P[Zi = −1] =
1/2. Let Sn =

∑
i≤n Zi. Then, for any β > 0,

P[Sn ≥ β] ≤ e−β2/2n.

Proof: The moment-generating function of Z1 can be bounded as follows

MZ1(s) =
es + e−s

2
=
∑
j≥0

s2j

(2j)!
≤
∑
j≥0

(s2/2)j

j!
= es

2/2. (7)
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Taking s = β/n in the Chernoff-Cramér bound (3), we get

P[Sn ≥ β] ≤ exp (−sβ + nΨZ1(s))

≤ exp
(
−sβ + ns2/2

)
= e−β

2/2n,

which concludes the proof.
For any 0 < s < s0, the Chernoff-Cramér bound (3) already leads to an expo-

nential concentration bound on X . A better bound may be obtained by optimizing
the choice of s. The Chernoff-Cramér method is particularly useful for sums of
independent random variables as the moment-generating function then factorizes.
Let

Ψ∗X(β) = sup
s∈R+

(sβ −ΨX(s)),

be the Fenchel-Legendre dual of the cumulant-generating function of X .

THM 7.8 (Chernoff-Cramér method for sums of IID RVs) Let Sn =
∑

i≤nXi,
where the Xis are i.i.d. centered random variables. Assume MX1(s) < +∞ on
s ∈ (−s0, s0) for some s0 > 0. For any β > 0,

P[Sn ≥ β] ≤ exp

(
−nΨ∗X1

(
β

n

))
. (8)

In particular, in the large deviations regime, i.e., when β = bn for some b > 0, we
have

− lim sup
n

1

n
logP[Sn ≥ bn] ≥ Ψ∗X1

(b) . (9)

Proof: Observe that

Ψ∗Sn(β) = sup
s>0

(sβ − nΨX1(s)) = sup
s>0

n

(
s

(
β

n

)
−ΨX1(s)

)
= nΨ∗X1

(
β

n

)
,

and optimize over s in (3).

1.2 Binomial case

Let Z be a binomial random variable with parameters n and p. Recall that Z is a
sum of i.i.d. indicators Y1, . . . , Yn and, letting Xi = Yi − p and Sn = Z − np,

ΨX1(s) = log (pes + (1− p))− ps.
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For b ∈ (0, 1− p), letting a = b+ p, direct calculation gives

Ψ∗X1
(b) = sup

s>0
(sb− (log [pes + (1− p)]− ps))

= (1− a) log
1− a
1− p

+ a log
a

p
=: D(a‖p), (10)

achieved at sb = log (1−p)a
p(1−a) . The functionD(a‖p) in (10) is the so-called Kullback-

Leibler divergence or relative entropy of Bernoulli variables with parameters a and
p respectively. By (8) for β > 0

P[Z ≥ np+ β] ≤ exp (−nD (p+ β/n‖p)) .

Applying the same argument to Z ′ = n− Z gives a bound in the other direction.
In the large deviations regime, it can be shown that the previous bound is tight

in the sense that

− 1

n
logP[Z ≥ np+ bn]→ D (p+ b‖p) =: IBin

n,p (b),

as n→ +∞. See e.g. [Dur10, Section 2.6].

2 Sub-Gaussian random variables

The bounds described above were obtained by computing the moment-generating
function explicitly. This is seldom possible. In this section, we give some im-
portant examples of concentration inequalities derived from the Chernoff-Cramér
method for broad classes of random variables under natural conditions on their
distributions.

Sub-Gaussian random variables We say that a centered random variable X is
sub-Gaussian with variance factor ν > 0 if for all s ∈ R

ΨX(s) ≤ s2ν

2
,

which is denoted by X ∈ G(ν). Note that the r.h.s. is the cumulant-generating
function of a N(0, ν). By the Chernoff-Cramér method and (5) it follows immedi-
ately that

P [X ≤ −β] ∨ P [X ≥ β] ≤ exp

(
−β

2

2ν

)
, (11)

where we used that X ∈ G(ν) implies −X ∈ G(ν). When considering linear
combinations of independent sub-Gaussian random variables, we get the following.
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THM 7.9 (General Hoeffding inequality) Let X1, . . . , Xn be independent cen-
tered random variables where, for each i, Xi ∈ G(νi) with 0 < νi < +∞ and
let (a1, . . . , an) ∈ Rn. Let Sn =

∑
i≤n aiXi. Then Sn ∈ G(

∑n
i=1 a

2
i νi). In

particular, for all β > 0,

P [Sn ≥ β] ≤ exp

(
− β2

2
∑n

i=1 a
2
i νi

)
.

Proof: By independence,

ΨSn(s) =
∑
i≤n

ΨaiXi(s) =
∑
i≤n

ΨXi(sai) ≤
∑
i≤n

(sai)
2νi

2
=
s2
∑

i≤n a
2
i νi

2
.

EX 7.10 The proof of THM 7.7 shows that uniforms on {−1,+1} are sub-Gaussian
with variance factor 1.

Hoeffding’s inequality For bounded random variables, the previous inequality
gives the following useful bound.

THM 7.11 (Hoeffding’s inequality) LetX1, . . . , Xn be independent random vari-
ables where, for each i, Xi takes values in [ai, bi] with −∞ < ai ≤ bi < +∞. Let
Sn =

∑
i≤nXi. For all β > 0,

P[Sn − ESn ≥ β] ≤ exp

(
− 2β2∑

i≤n(bi − ai)2

)
.

By Theorem 7.9, it suffices to show that Xi−EXi ∈ G(νi) with νi = 1
4(bi− ai)2.

We first give a quick proof of a weaker bound that uses a trick called symmetriza-
tion. (Note: This proof uses conditioning, which will be covered later in the course,
and therefore can be skipped.) Suppose the Xis are centered and satisfy |Xi| ≤ ci
for some ci > 0. LetX ′i be an independent copy ofXi and let Zi be an independent
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uniform random variable in {−1, 1}. For any s, by Jensen’s inequality and (7),

E
[
esXi

]
= E

[
esE[Xi−X′i |Xi]

]
≤ E

[
E
[
es(Xi−X

′
i)
∣∣∣Xi

]]
= E

[
es(Xi−X

′
i)
]

= E
[
E
[
es(Xi−X

′
i)
∣∣∣Zi]]

= E
[
E
[
esZi(Xi−X

′
i)
∣∣∣Zi]]

= E
[
esZi(Xi−X

′
i)
]

= E
[
E
[
esZi(Xi−X

′
i)
∣∣∣Xi −X ′i

]]
≤ E

[
e(s(Xi−X′i))2/2

]
≤ e−4c2i s

2/2,

where on the fifth line we used the fact that Xi − X ′i is identically distributed to
−(Xi−X ′i) and that Zi is independent of bothXi andX ′i (together with LEM 7.3).
That is, Xi is sub-Gaussian with variance factor 4c2

i . By THM 7.9, Sn is sub-
Gaussian with variance factor

∑
i≤n 4c2

i and

P[Sn ≥ t] ≤ exp

(
− t2

8
∑

i≤n c
2
i

)
.

Proof:[Proof of THM 7.11] As pointed out above, it suffices to show thatXi−EXi

is sub-Gaussian with variance factor 1
4(bi−ai)2. This is the content of Hoeffding’s

lemma. First an observation:

LEM 7.12 (Variance of bounded random variables) For any random variable
Z taking values in [a, b] with −∞ < a ≤ b < +∞, we have

Var[Z] ≤ 1

4
(b− a)2.

Proof: Indeed ∣∣∣∣Z − a+ b

2

∣∣∣∣ ≤ b− a
2

,

and

Var[Z] = Var

[
Z − a+ b

2

]
≤ E

[(
Z − a+ b

2

)2
]
≤
(
b− a

2

)2

.
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LEM 7.13 (Hoeffding’s lemma) Let X be a random variable taking values in
[a, b] for −∞ < a ≤ b < +∞. Then X − EX ∈ G

(
1
4(b− a)2

)
.

Proof: Note first thatX−EX ∈ [a−EX, b−EX] and 1
4((b−EX)−(a−EX))2 =

1
4(b−a)2. So w.l.o.g. we assume EX = 0. BecauseX is bounded, MX(s) is finite
for all s ∈ R. From standard results on moment-generating functions (e.g., [Bil95,
Section 21]; see also [Dur10, Theorem A.5.1]), for any k ∈ Z,

M
(k)
X (s) = E

[
XkesX

]
.

Hence

ΨX(0) = logMX(0) = 0, Ψ′X(0) =
M ′X(0)

MX(0)
= EX = 0,

and by a Taylor expansion

ΨX(s) = ΨX(0) + sΨ′X(0) +
s2

2
Ψ′′X(s∗) =

s2

2
Ψ′′X(s∗),

for some s∗ ∈ [0, s]. Therefore it suffices to show that for all s

Ψ′′X(s) ≤ 1

4
(b− a)2. (12)

Note that

Ψ′′X(s) =
M ′′X(s)

MX(s)
−
(
M ′X(s)

MX(s)

)2

=
1

MX(s)
E
[
X2esX

]
−
(

1

MX(s)
E
[
XesX

])2

= E
[
X2 esX

MX(s)

]
−
(
E
[
X

esX

MX(s)

])2

.

The trick to conclude is to notice that esx

MX(s) defines a density (i.e., a Radon-
Nikodym derivative) on [a, b] with respect to the law of X . The variance under
this density—the last line above—is less than 1

4(b− a)2 by LEM 7.12. This estab-
lishes (12) and concludes the proof.
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3 Epsilon-net arguments

Exponential tail inequalities are useful, among other things, to study the deviations
(or expectations) of suprema of random variables. When the supremum is over an
infinite index set, one way to proceed is to apply a tail inequality to a sufficiently
dense finite subset of the index set, and then extend the resulting bound by con-
tinuity. This is referred to as an ε-net argument and it is easier to understand on
an example. In this section, we show how to use an ε-net argument to bound the
spectral norm of a random matrix with independent, sub-Gaussian entries.

ε-nets But, first, a few general definitions. To elaborate on the last point, which
is known as an ε-net argument, we make the following definition.

DEF 7.14 (ε-net) Let S be a subset of a metric space (M,ρ) and let ε > 0. The
collection of points N ⊆ S is called an ε-net of S if all pairs of points in N are at
distance greater than ε and N is maximal by inclusion in S. In particular for all
z ∈ S, infy∈N ρ(z, y) ≤ ε. The covering number of S, denoted by N (S, ρ, ε), is
the smallest cardinality of an ε-net of S.

The definition of an ε-net immediately suggests an algorithm for constructing one.
Start with N = ∅ and successively add a point to N at distance at least ε from all
other previous points until that is not possible to do so anymore. (Provided S is
compact, this procedure will terminate after a finite number of steps.)

EX 7.15 (Sphere in Rk) Let Sk−1 be the sphere of radius 1 centered around the
origin in Rk with the Euclidean metric. Let 0 < ε < 1.

CLAIM 7.16

N (S, ρ, ε) ≤
(

3

ε

)k
Let N be any ε-net of S. We claim that indeed |N | ≤ (3/ε)k. The balls of radius
ε/2 around points in N , {Bk(xi, ε/2) : xi ∈ N}, satisfy two properties:

1. They are pairwise disjoint: if z ∈ Bk(xi, ε/2) ∩ Bk(xj , ε/2), then ‖xi −
xj‖2 ≤ ‖xi − z‖2 + ‖xj − z‖2 ≤ ε, a contradiction.

2. They are included in the ball of radius 3/2 around the origin: if z ∈ Bk(xi, ε/2),
then ‖z‖2 ≤ ‖z − xi‖2 + ‖xi‖ ≤ ε/2 + 1 ≤ 3/2.

The volume of a ball of radius is ε/2 is πk/2(ε/2)k

Γ(k/2+1) and that of a ball of radius 3/2

is πk/2(3/2)k

Γ(k/2+1) . Dividing one by the other proves the claim.
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Spectral norm of a random matrix For a m× n matrix A ∈ Rm×n, recall that
the spectral norm is defined as

‖A‖ := sup
x∈Rn\{0}

‖Ax‖2
‖x‖2

= sup
x∈Sn−1

y∈Sm−1

〈Ax,y〉, (13)

where Sn−1 is the sphere of radius 1 around the origin in Rn. (To see the equality
above, note that Cauchy-Schwarz implies 〈Ax,y〉 ≤ ‖Ax‖2‖y‖2 and that one can
take y = Ax/‖Ax‖2 for any x such that Ax 6= 0 in the rightmost expression.)

THM 7.17 Let A ∈ Rm×n be a random matrix whose entries are centered, in-
dependent and sub-Gaussian with variance factor ν. Then there exist a constant
0 < C < +∞ such that, for all t > 0,

‖A‖ ≤ C
√
ν(
√
m+

√
n+ t),

with probability at least 1− e−t2 .

EX 7.18 Without the independence assumption, the spectral norm can be much
larger. SayA ∈ Rn×n is all-(+1) or all-(−1) with equal probability. Then consid-
ering the all-(+1) vector (and the orthogonal complement) shows that ‖A‖ = n.

Proof:[of THM 7.17] Fix ε = 1/4. By CLAIM 7.16, there is an ε-net N (respec-
tively M ) of Sn−1 (respectively Sm−1) with |N | ≤ 12n (respectively |M | ≤ 12m).
We proceed in two steps:

1. We first apply the general Hoeffding inequality (THM 7.9) to control the
deviations of the supremum in (13) restricted to N and M .

2. We then extend the bound to the full supremum by continuity.

Formally, the result follows from the following two lemmas.

LEM 7.19 Let N and M be as above. For C large enough, for all t > 0,

P

max
x∈N
y∈M

〈Ax,y〉 ≥ 1

2
C
√
ν(
√
m+

√
n+ t)

 ≤ e−t2 .
LEM 7.20 For any ε-nets N and M of Sn−1 and Sm−1 respectively, the following
inequalities hold

sup
x∈N
y∈M

〈Ax,y〉 ≤ ‖A‖ ≤ 1

1− 2ε
sup
x∈N
y∈M

〈Ax,y〉.
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Proof:[Proof of LEM 7.19] Note that the quantity 〈Ax,y〉 is a linear combination
of independent random variables:

〈Ax,y〉 =
∑
i,j

xiyjAij .

By the general Hoeffding inequality (THM 7.9), 〈Ax,y〉 is sub-Gaussian with
variance factor ∑

i,j

(xiyj)
2 ν = ‖x‖22 ‖y‖22 ν = ν,

for all x ∈ N and y ∈M . In particular, for all β > 0,

P [〈Ax,y〉 ≥ β] ≤ exp

(
−β

2

2ν

)
.

Hence, by a union bound over N and M ,

P

max
x∈N
y∈M

〈Ax,y〉 ≥ 1

2
C
√
ν(
√
m+

√
n+ t)


≤
∑
x∈N
y∈M

P
[
〈Ax,y〉 ≥ 1

2
C
√
ν(
√
m+

√
n+ t)

]

≤ |N ||M | exp

(
− 1

2ν

{
1

2
C
√
ν(
√
m+

√
n+ t)

}2
)

≤ 12n+m exp

(
−C

2

8

{
m+ n+ t2)

})
≤ e−t2 ,

for C2/8 = ln 12 ≥ 1, where in the third inequality we ignored all cross-products
since they are non-negative.
Proof:[Proof of LEM 7.20] The first inequality is immediate. For the second in-
equality, we will use the following observation

〈Ax,y〉 − 〈Ax0,y0〉 = 〈Ax,y − y0〉+ 〈A(x− x0),y0〉. (14)

Fix x ∈ Sn−1 and y ∈ Sm−1 such that 〈Ax,y〉 = ‖A‖, and let x0 ∈ N and
y0 ∈M such that

‖x− x0‖2 ≤ ε and ‖y − y0‖2 ≤ ε.
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Then (14), Cauchy-Schwarz and the definition of the spectral norm imply

‖A‖ − 〈Ax0,y0〉 ≤ ‖A‖‖x‖2‖y − y0‖2 + ‖A‖‖x− x0‖2‖y0‖2 ≤ 2ε‖A‖.

Rearranging gives the claim.
Putting the two lemmas together concludes the proof of THM 7.17.
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