Notes 9 : CLT and Poisson Convergence

Math 733-734: Theory of Probability Lecturer: Sebastien Roch

References: [Durl0, Section 3.4, 3.6].

1 Deterministic Lemmas
We will need some deterministic lemmas throughout.

LEM 9.1 Let z1,..., 2z, and w1, ...,w, be complex numbers of modulus < 6.

Then
n n
12— 1T wm
m=1 m=1

n
< gt Z |2m — Wi
m=1

Proof:
n n n n n n
[T 2n =TT wn| < |or 1T 2 =20 [T wm| + |2 [] wm = wn I wim
m=1 m=1 m=2 m=2 m=2 m=2
n n
<0 H Zm — H Wi | + 0"z — wy,
m=2 m=2

and use induction. |

LEM 9.2 If maxi<j<n |¢jnl — 0, 2274 ¢jn — A and sup, Y0y |cjn
then

< 0
n

H(l + ij) — 6)‘.

j=1

Proof: Note that
implies

w — lasx — 0. Hence Ve > 0, 30 > 0 such that |z| < ¢
x —elz| <log(l+x) < x+¢lzl.

The following standard expansion is proved in [D].
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LEM 9.3 We have

) ‘x|n+1 2|$’n
< min , .
(n+1)!" nl!

m=0
LEM 9.4 If z is a complex number then

le? — (14 2)] < |z|?e.
Proof: By a Taylor expansion,
le” — (L+2)| <|22/214+ 23/31 + - - - |

< JzP(1/20+ 2l/30+ - )

< |z|%€l*.

2 Easy laws

21 CLT

As we saw before, the behavior of ¢ around 0 contains information about the
tail/moments of

THM 9.5 We have

n .
: E[(itX)™ tx|ntl o 2ltx |
] - 3 BIGO™ g [ (X o]
m! (n+1)!" n!
m=0
Proof: This follows from Lemma 9.3. [ ]

We can now prove the CLT.

THM 9.6 Let (X,,),, be IID with E[X1] = p and Var[X1] = 0% < +00.Then if

Sn = Zkgn Xk
_ Sp—np

Z
" ov/n

= Z,
where Z ~ N(0,1).
Proof: Suffices to prove the result for © = 0. Note that

bx, (1) =1 — 02;2 + o(t?),
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where the error term is < #?E[[t||X|?> A 2|X|?]. The expression inside the ex-
pectation is dominated by 2X? which is integrable. So (DOM) implies that the
expectation in the error term goes to 0 as ¢ — 0.

By independence

2

o2,01= (15 +oli)) e

The inversion formula and continuity theorem conclude the proof. (In fact, one
must prove the above limit for complex numbers. This follows from Lemmas 9.1
and 9.4.) [ |

2.2 Poisson convergence

THM 9.7 Let X,, be binomial with parameters n and \/n, for A > 0. Then
X, = Z where Z is Poisson with parameter \.

Proof: The CF of X, is

b (8) = <ieit + (1 - 2>>n S exp (A — 1)),

for all ¢ as n — 400, by Lemmas 9.1 and 9.4. |

3 Lindeberg-Feller CLT

THM 9.8 (Lindeberg-Feller CLT) For each n, let X;, p,, 1 < m < n, be inde-
pendent with E[X,, ,] = 0. Suppose

Ly EBXZ =1
2. Ve >0, limy, Y0 Bl X m|%5 [ Xnm| > €] = 0.
Then "
Zn=>> Xnm=Z,

m=1

asn — oo where Z ~ N(0,1).

In other words, a sum of a large number of small independent effects is approxi-
mately normal.
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EX 9.9 To recover our previous CLT, take X, ,, = X /+/n. The first condition
is clearly satisfied. If € > 0

Y ElXoml [ Xom| > €] = nE[|1X1/Val*; | X1/Vn] > €]

m=1

= E[|X1[%|X1| > ev/n] = 0,
by (DOM) and E[X?] < +oo.
Proof: Letting ¢y, ;, be the CF of X, ,, and 02, = E[X?2 ]. It suffices to prove

[T dnm®) — /2
m=1

We will show this by proving two claims.

CLAIM 9.10

n

[T -02,./2) -t/

m=1

— 0.

CLAIM 9.11

— 0.

H (rbn,m(t) - H (1 - t2072z,m/2)
m=1

= m=1

1. Claim 9.10. Note that
0pm < €+ E[| X ml* | Xnml| > €],

so by the second condition we have maxi<;<p 0,2”,l — 0 (where the maxi-
mum over the second term is bounded by its sum). By the first condition,

n

Z —t20%7m/2 — —t%/2.

m=1
The result follows from Lemma 9.2 (or Lemmas 9.1 and 9.4).

2. Claim 9.11.

By Lemma 9.3 above (this calculation explains why we need the more so-
phisticated error term; o.w. the € would not come out),

|n.m () —(1 = %07 ,,/2)]
< B[t Xnm[* A 20t X0 m[?]
< E[[tXnml*s | Xnym| < €]+ ER1E X m % | Xnm| > €]
< B[ Xl [ Xnm| < €] + 27 (| X s [ Xl > €]
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Note that both terms on the LHS are bounded by 1 in absolute value (for n
large enough by the max bound above). (Note this is not uniform in ¢, but
for any fixed ¢ one can choose n large enough so that the norm is less than 1.)
So the sum over m converges to 0 and the claim follows from Lemma 9.1.

3.1 Examples

A good example of a triangular array is the following, which we studied as an
application of Chebyshev’s inequality.

EX 9.12 (Random permutations) Any permutation can be decomposed into cy-
cles. Eg., ifm = [3,9,6,8,2,1,5,4,7], then m = (136)(2975)(48). In fact,
a uniform permutation can be generated by following a cycle until it closes and
starting from the smallest unassigned element, and so on. Let X,, j. be the indica-
tor that the k-th element in this construction precedes the closure of a cycle. E.g.,
we have X9 3 = X97 = X9 9 = 1. The construction above implies that the X,, }.’s

are independent and
1

n—j+1
That is because only one of the remaining elements closes the cycle. (To prove
independence formally, show by induction on j that

P[X,, =1] =

i
P[Xni = @ni Vi < §] = [[P[Xni = 2n].)
=1

Letting S, be the number of cycles in ™ we have

1

E[Sy] = Z n—j+1 ~ logn,
j=1

and

Var[S,] = ZVar[Xnyj] = Z < - - : 2> ~ logn
= = n—j+1 (nmn—j74+1)

Then we have S 1
n , n — 1081
—p 1 in faCt W

—p O,
logn

by Chebyshev’s inequality.
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On the other hand, defining

Xng—(n—j+1)~"
Vlogn

we get B[ Z,, 5] = 0, 35 E[Z} )] = 1, and for e > 0

Znj =

n
> EllZn;l* 120l > €] = 0,
j=1

since the sum is 0 as soon as (logn)~'/? < e. (Note that (n — j +1)"' < 1.)

Hence,
Sn —logn

= Z,
Vlogn

where Z ~ N(0, 1).

4 Law of rare events

4.1 First proof

THM 9.13 (Law of rare events) For each n, let X;, p,, 1 < m < n, be indepen-
dent with P[ Xy, 1, = 1] = ppm and P X,y = 0] = 1 — ppy o and P[ X, > 2] =
En,m. Suppose

1y Pam — A > 0.
2. maxij<m<n Pn,m — 0.

3 > enm — 0.

Then .
S, = Z Xnm = 2,

m=1

as n — oo where Z ~ Poi(\).

Proof: Under the last assumption, the probability that any of the X, ,;,’s is > 2
goes to 0 as n — 4o0. Hence, by the converging together lemma (proved in
homework), it suffices to consider the case €, ,,, = 0.

1. We first compute the moment-generating function of the Poisson distribu-
tion. Note that
—A\k
e\
eztk

I = e e = exp(A(e® —1)).

62(t) = E[e"] =
k>0
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2. We compute the moment-generating function of a Bernoulli. Note that
¢X”n,m (t) = E[eitxn’m] = (1 - pn,m) +pn,meit =1 +pn,m(€it — 1).

3. Since Y | Pnm — A, it suffices to prove

n

exp <Z pn,m(eit - 1)) — H [1 —l—pn,m(eit —1)]| — 0.
m=1

m=1

Note that
|exp(p(e —1))| = exp(Re(e” — 1)) = exp(cost — 1) < 1
and ‘ ‘
[1+p(e” =1 =|1-p)+pe’| <1,

for p € [0, 1]. So from Lemmas 9.1 and 9.4 above, using that maxj<m<n Prnm <
1/2and |e¥ — 1] < 2,

n

exp (Z Prm(et — 1)) — H [T+ ppm(e —1)]
m=1

m=1

< Z ’eXp(pn,m(eit -1)-01 +pn,m(eit — 1)
m=1

<D phmle =1

m=1
n
<4 max
< (s v ) X o
m=1
=0

EX 9.14 A typical application of the law of rare events is to approximate a bino-

mial. Assume you have 365 students in class. The probability that none of them

has their birthday today is roughly e .

4.2 Rate of convergence

Recall the following.
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THM 9.15 The following are equivalent:
1. Fx, () = Fx(x) for all points of continuity of Fx.
2. E[f(Xn)] — E[f(X)] forall f € Cy(R).
3. EleiXr] — E[e?X] forall t € R.

There are several ways of measuring how fast weak convergence occurs. For two
PMs u, v, the following definition gives a natural notion of distance

[ f@wtan) - [ s,

where D is a class of functions. The choice D = {f : f = Lo, T € R} leads
to the Kolmogorov-Smirnov distance.

For the record, the following is a standard result refining the CLT. The proof is
in [D].

THM 9.16 (Berry-Esseen theorem) Let (X,,),, be IID with E[X;] = 0, E[X?] =
02, and E|X1]3 = p < cc. If F,, is the DF of (X1 + -+ - + X,,)/o+/n and F is the
DF of the standard normal, then

I = vlp = sup
feD

3p
ody/n’

For the Poisson convergence theorem, we will use a stronger notion of distance.

sup |Fu(x) - F(a)]| <

DEF 9.17 (Total variation distance) Ler p, v be probability measure on (), F).
The total variation distance between 1 and v is defined as

I =iy = sup [u(A) = v(A)].
AeF

Note this corresponds to takingD = {f : f =14, A€ F}.
In the countable case, we give an equivalent definition.

LEM 9.18 Assume Q = S is countable and F = 25. Then
1
I =vllry =5 Y lnw) = v(@)].
weN
Proof: By the triangle inequality, for any A C (2
D lnlw) = (@) = [p(A) = v(A)] + [(A°) = v(A)] = 2u(A) - v(A)],
we

with equality when
A= fw: pw) > v(w)
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4.2.1 Poisson convergence by the coupling method
We prove the following refinement of the Poisson convergence theorem.

THM 9.19 For some n, let X, ,, 1 < m < n, be independent with }P’[Xn,m =
1] = pnm and P[X,, y, = 0] = 1 — pyy 4. Then

n
s, — nzllev < P,

m=1

m=1

where STL = Zn X,Lm and Z ~ POI()\ = ngn pn,m)

We will use coupling to prove the previous theorem. We restrict ourselves to a
countable space 2 = S and F = 2°. We let A(S) be the set of all PMs on S.

DEF 9.20 (Coupling of RVs) A coupling of u,v € A(S) is a pair of S-valued
RVs (X,Y) € S? (defined on a joint probability space) such that X ~ u and
Y ~u.

EX9.21 Let S = {0,1}. Assume p = v. Then X ~ v, Y ~ v independent
defines a coupling. So does X =Y. If u # v, the latter is not possible. In order
to maximize the probability that P[X = Y] one can choose P[X =Y = w| =
pw) Av(w), PIX = 1,Y = 0] = (v(0) — p(0))+ and P[X = 0,Y = 1] =
(1(0) — ¥(0))-.

The following lemma gets us closer to our goal.
LEM 9.22 (Coupling lemma) Ler (X,Y') be any coupling of pn,v € A(S). Then

I = vllrv <PLX # Y],

Proof: Note
p(s) =PIX = s

=PX=5X#Y]+PX =5Y =4
<PX =5,X#Y]+PY =5
<PX =s,X#Y]+v(s)

Similarly
(V(S) - M(S))Jr < ]P)[Y = S7X 7& Y]a

o)

n(s) —v(s)| <PX =8, X £Y]+PlY =5, X #Y].
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Summing over y gives the result.
(We also give an optimal coupling. Note that

L= @) Av(w) + (pw) = v(@)+] = Y [w) Avw) + (v(w) = pw))4],

we weN

so that

D uw) Av(w) =1—|lu—v]rv.

we
Consider the following sub-intervals of (0, 1). Divide up (0,1 — || — v||Tv) into
disjoint intervals 1, of length p(w) Av(w). Similarly, divide up (1 —||x—v||Tv, 1)
into disjoint intervals J,, (respectively K,,) of length u(w) (respectively v(w)).
Then a coupling achieving || — v||pv = P[X # Y] is obtained by picking U
uniformly at random from (0, 1) and assigning X =Y = wif U € I,,or X =
wl,YZWQifUEleﬂKw2.) |

We come back to the proof of the theorem.

Proof: By the coupling lemma, it suffices to find a coupling with high agreement
probability. For each 1 < m < n, we define

1 —pum ifr=y=20,
PXym=2Y,m=yl=<e P —14+p,,, ifx=1y=0,
e_p"’mp%—’,’" ifx=1,y>1.
Yy

The marginal of X, ,,, is Bernoulli with parameter p;, ,,, and the marginal of Y, ,,,
is Poisson with parameter p, ,,,. (The goal is to make them as close as possible in
distribution.) Therefore

Z Yo.m ~ Poi(A).

1<m<n
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We compute the disagreement probability. Note

PSp # Tn] < Y P Xpm # Yom]

m<n

= e =14 pum + P[Vom > 2]]

m<n

= Z [e_pn,m +pn,m - IP)[Yvn,m < 1]]

m<n

— 5 [efpn,m +pn,m _ efpn,m _ pn7m€7pn,m]
m<n

= Z pn,m{l — e Prm]

m<n

<N P

m<n

EX 9.23 (Poisson approximation to the binomial) Assume p,,,, = \/n for all

m. Then
2

A
|Bin(n, A\/n) — Poi(A)||tv < o

4.3 Example with dependence
EX 9.24 (Matching) Ler S, = Y ., X, be the number of fixed points in a

m=1
uniform random permutation, where Xy, ,, = 1 if m is a fixed point. We want to
compute P[S,, = k]. Note that we cannot apply the previous theorem because of
the lack of independence. However, a Poisson limit with \ = 1 seems natural. We

will need the following lemma.

LEM 9.25 (Inclusion-exclusion formula) Let Ay, As, ..., A, be events and A =
Ui, A;. Then

PlA] =) P[Aj] - ) P[A;N Aj]
i=1 1<J
+ ) PlAINA; N A — -+ (1) PN, AL

i<j<k

(Moreover, truncating the sum at any term gives an upper bound if the next term is
negative and a lower bound if the next term is positive.)
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Proof: Expand 14 =1 —[[;_,(1 — 14,) and take expectation. See [D]. [
Let A,, = { Xy m = 1}. Then

B — ol ;!1)! - (Z) (n 7:!2)! . (z) (n ;!3)! o

So
B n (_1)m71
P[Sn>0]—z_:1 T

and

PlS, =0] =3 (_ni?m.
m=0

Note that the first two terms cancel each other out. Hence

+0oo m
Bls. =0 - =| 3 CF
m=n-+1 :
1 > 1
~ (n+1)! z;)(nJr?)’“

Finally,
PS, = = (" ! (S_p = 0]
"k nn—=1)---(n—k+1) ek
1
efl
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