
Notes 9 : CLT and Poisson Convergence

Math 733-734: Theory of Probability Lecturer: Sebastien Roch

References: [Dur10, Section 3.4, 3.6].

1 Deterministic Lemmas

We will need some deterministic lemmas throughout.

LEM 9.1 Let z1, . . . , zn and w1, . . . , wn be complex numbers of modulus ≤ θ.
Then ∣∣∣∣∣

n∏
m=1

zm −
n∏

m=1

wm

∣∣∣∣∣ ≤ θn−1
n∑

m=1

|zm − wm|.

Proof:∣∣∣∣∣
n∏

m=1

zm −
n∏

m=1

wm

∣∣∣∣∣ ≤
∣∣∣∣∣z1

n∏
m=2

zm − z1

n∏
m=2

wm

∣∣∣∣∣+

∣∣∣∣∣z1

n∏
m=2

wm − w1

n∏
m=2

wm

∣∣∣∣∣
≤ θ

∣∣∣∣∣
n∏

m=2

zm −
n∏

m=2

wm

∣∣∣∣∣+ θn−1|z1 − w1|,

and use induction.

LEM 9.2 If max1≤j≤n |cj,n| → 0,
∑n

j=1 cj,n → λ and supn
∑n

j=1 |cj,n| < ∞
then

n∏
j=1

(1 + cj,n)→ eλ.

Proof: Note that log(1+x)
x → 1 as x→ 0. Hence ∀ε > 0, ∃δ > 0 such that |x| < δ

implies
x− ε|x| < log(1 + x) < x+ ε|x|.

The following standard expansion is proved in [D].
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LEM 9.3 We have∣∣∣∣∣eix −
n∑

m=0

(ix)m

m!

∣∣∣∣∣ ≤ min

(
|x|n+1

(n+ 1)!
,
2|x|n

n!

)
.

LEM 9.4 If z is a complex number then

|ez − (1 + z)| ≤ |z|2e|z|.

Proof: By a Taylor expansion,

|ez − (1 + z)| ≤ |z2/2! + z3/3! + · · · |
≤ |z|2(1/2! + |z|/3! + · · · )
≤ |z|2e|z|.

2 Easy laws

2.1 CLT

As we saw before, the behavior of φ around 0 contains information about the
tail/moments of µ:

THM 9.5 We have∣∣∣∣∣E [eitX]−
n∑

m=0

E[(itX)m]

m!

∣∣∣∣∣ ≤ E
[
min

{
|tX|n+1

(n+ 1)!
,
2|tX|n

n!

}]
.

Proof: This follows from Lemma 9.3.
We can now prove the CLT.

THM 9.6 Let (Xn)n be IID with E[X1] = µ and Var[X1] = σ2 < +∞.Then if
Sn =

∑
k≤nXk

Zn =
Sn − nµ
σ
√
n
⇒ Z,

where Z ∼ N(0, 1).

Proof: Suffices to prove the result for µ = 0. Note that

φX1(t) = 1− σ2t2

2
+ o(t2),
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where the error term is ≤ t2E[|t||X|3 ∧ 2|X|2]. The expression inside the ex-
pectation is dominated by 2X2 which is integrable. So (DOM) implies that the
expectation in the error term goes to 0 as t→ 0.

By independence

φZn(t) =

(
1− t2

2n
+ o(t2)

)n
→ e−t

2/2.

The inversion formula and continuity theorem conclude the proof. (In fact, one
must prove the above limit for complex numbers. This follows from Lemmas 9.1
and 9.4.)

2.2 Poisson convergence

THM 9.7 Let Xn be binomial with parameters n and λ/n, for λ > 0. Then
Xn ⇒ Z where Z is Poisson with parameter λ.

Proof: The CF of Xn is

φXn(t) =

(
λ

n
eit +

(
1− λ

n

))n
→ exp

(
λ(eit − 1)

)
,

for all t as n→ +∞, by Lemmas 9.1 and 9.4.

3 Lindeberg-Feller CLT

THM 9.8 (Lindeberg-Feller CLT) For each n, let Xn,m, 1 ≤ m ≤ n, be inde-
pendent with E[Xn,m] = 0. Suppose

1.
∑n

m=1 E[X2
n,m]→ 1.

2. ∀ε > 0, limn
∑n

m=1 E[|Xn,m|2; |Xn,m| > ε] = 0.

Then

Zn =
n∑

m=1

Xn,m ⇒ Z,

as n→∞ where Z ∼ N(0, 1).

In other words, a sum of a large number of small independent effects is approxi-
mately normal.
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EX 9.9 To recover our previous CLT, take Xn,m = Xm/
√
n. The first condition

is clearly satisfied. If ε > 0

n∑
m=1

E[|Xn,m|2; |Xn,m| > ε] = nE[|X1/
√
n|2; |X1/

√
n| > ε]

= E[|X1|2; |X1| > ε
√
n]→ 0,

by (DOM) and E[X2
1 ] < +∞.

Proof: Letting φn,m be the CF of Xn,m and σ2
n,m = E[X2

n,m]. It suffices to prove
n∏

m=1

φn,m(t)→ e−t
2/2.

We will show this by proving two claims.

CLAIM 9.10 ∣∣∣∣∣
n∏

m=1

(1− t2σ2
n,m/2)− e−t2/2

∣∣∣∣∣→ 0.

CLAIM 9.11 ∣∣∣∣∣
n∏

m=1

φn,m(t)−
n∏

m=1

(1− t2σ2
n,m/2)

∣∣∣∣∣→ 0.

1. Claim 9.10. Note that

σ2
n,m ≤ ε2 + E[|Xn,m|2; |Xn,m| > ε],

so by the second condition we have max1≤m≤n σ
2
n,m → 0 (where the maxi-

mum over the second term is bounded by its sum). By the first condition,
n∑

m=1

−t2σ2
n,m/2→ −t2/2.

The result follows from Lemma 9.2 (or Lemmas 9.1 and 9.4).

2. Claim 9.11.

By Lemma 9.3 above (this calculation explains why we need the more so-
phisticated error term; o.w. the ε would not come out),

|φn,m(t)−(1− t2σ2
n,m/2)|

≤ E[|tXn,m|3 ∧ 2|tXn,m|2]

≤ E[|tXn,m|3; |Xn,m| ≤ ε] + E[2|tXn,m|2; |Xn,m| > ε]

≤ εt3E[|Xn,m|2; |Xn,m| ≤ ε] + 2t2E[|Xn,m|2; |Xn,m| > ε].
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Note that both terms on the LHS are bounded by 1 in absolute value (for n
large enough by the max bound above). (Note this is not uniform in t, but
for any fixed t one can choose n large enough so that the norm is less than 1.)
So the sum over m converges to 0 and the claim follows from Lemma 9.1.

3.1 Examples

A good example of a triangular array is the following, which we studied as an
application of Chebyshev’s inequality.

EX 9.12 (Random permutations) Any permutation can be decomposed into cy-
cles. E.g., if π = [3, 9, 6, 8, 2, 1, 5, 4, 7], then π = (136)(2975)(48). In fact,
a uniform permutation can be generated by following a cycle until it closes and
starting from the smallest unassigned element, and so on. Let Xn,k be the indica-
tor that the k-th element in this construction precedes the closure of a cycle. E.g.,
we have X9,3 = X9,7 = X9,9 = 1. The construction above implies that the Xn,k’s
are independent and

P[Xn,j = 1] =
1

n− j + 1
.

That is because only one of the remaining elements closes the cycle. (To prove
independence formally, show by induction on j that

P[Xn,i = xn,i, ∀i ≤ j] =

j∏
i=1

P[Xn,i = xn,i].)

Letting Sn be the number of cycles in π we have

E[Sn] =
n∑
j=1

1

n− j + 1
∼ log n,

and

Var[Sn] =
n∑
j=1

Var[Xn,j ] =
n∑
j=1

(
1

n− j + 1
− 1

(n− j + 1)2

)
∼ log n

Then we have
Sn

log n
→P 1 in fact

Sn − log n

(log n)1/2+ε
→P 0,

by Chebyshev’s inequality.
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On the other hand, defining

Zn,j =
Xn,j − (n− j + 1)−1

√
log n

,

we get E[Zn,j ] = 0,
∑n

j=1 E[Z2
n,j ]→ 1, and for ε > 0

n∑
j=1

E[|Zn,j |2; |Zn,j | > ε]→ 0,

since the sum is 0 as soon as (log n)−1/2 < ε. (Note that (n − j + 1)−1 ≤ 1.)
Hence,

Sn − log n√
log n

⇒ Z,

where Z ∼ N(0, 1).

4 Law of rare events

4.1 First proof

THM 9.13 (Law of rare events) For each n, let Xn,m, 1 ≤ m ≤ n, be indepen-
dent with P[Xn,m = 1] = pn,m and P[Xn,m = 0] = 1− pn,m and P[Xn,m ≥ 2] =
εn,m. Suppose

1.
∑n

m=1 pn,m → λ > 0.

2. max1≤m≤n pn,m → 0.

3.
∑n

m=1 εn.m → 0.

Then

Sn =

n∑
m=1

Xn,m ⇒ Z,

as n→∞ where Z ∼ Poi(λ).

Proof: Under the last assumption, the probability that any of the Xn,m’s is ≥ 2
goes to 0 as n → +∞. Hence, by the converging together lemma (proved in
homework), it suffices to consider the case εn,m = 0.

1. We first compute the moment-generating function of the Poisson distribu-
tion. Note that

φZ(t) = E[eitZ ] =
∑
k≥0

e−λλk

k!
eitk = e−λee

itλ = exp(λ(eit − 1)).
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2. We compute the moment-generating function of a Bernoulli. Note that

φXn,m(t) = E[eitXn,m ] = (1− pn,m) + pn,me
it = 1 + pn,m(eit − 1).

3. Since
∑n

m=1 pn,m → λ, it suffices to prove∣∣∣∣∣exp

(
n∑

m=1

pn,m(eit − 1)

)
−

n∏
m=1

[1 + pn,m(eit − 1)]

∣∣∣∣∣→ 0.

Note that

| exp(p(eit − 1))| = exp(Re(eit − 1)) = exp(cos t− 1) ≤ 1

and
|1 + p(eit − 1)| = |(1− p) + peit| ≤ 1,

for p ∈ [0, 1]. So from Lemmas 9.1 and 9.4 above, using that max1≤m≤n pn,m ≤
1/2 and |eit − 1| ≤ 2,∣∣∣∣∣exp

(
n∑

m=1

pn,m(eit − 1)

)
−

n∏
m=1

[1 + pn,m(eit − 1)]

∣∣∣∣∣
≤

n∑
m=1

| exp(pn,m(eit − 1))− [1 + pn,m(eit − 1)]|

≤
n∑

m=1

p2
n,m|eit − 1|2

≤ 4

(
max

1≤m≤n
pn,m

) n∑
m=1

pn,m

→ 0.

EX 9.14 A typical application of the law of rare events is to approximate a bino-
mial. Assume you have 365 students in class. The probability that none of them
has their birthday today is roughly e−1.

4.2 Rate of convergence

Recall the following.
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THM 9.15 The following are equivalent:

1. FXn(x)→ FX(x) for all points of continuity of FX .

2. E[f(Xn)]→ E[f(X)] for all f ∈ Cb(R).

3. E[eitXn ]→ E[eitX ] for all t ∈ R.

There are several ways of measuring how fast weak convergence occurs. For two
PMs µ, ν, the following definition gives a natural notion of distance

‖µ− ν‖D = sup
f∈D

∣∣∣∣∫ f(x)µ(dx)−
∫
f(x)ν(dx)

∣∣∣∣ ,
whereD is a class of functions. The choiceD = {f : f = 1(−∞,x], x ∈ R} leads
to the Kolmogorov-Smirnov distance.

For the record, the following is a standard result refining the CLT. The proof is
in [D].

THM 9.16 (Berry-Esseen theorem) Let (Xn)n be IID with E[X1] = 0, E[X2
1 ] =

σ2, and E|X1|3 = ρ <∞. If Fn is the DF of (X1 + · · ·+Xn)/σ
√
n and F is the

DF of the standard normal, then

sup
x
|Fn(x)− F (x)| ≤ 3ρ

σ3
√
n
.

For the Poisson convergence theorem, we will use a stronger notion of distance.

DEF 9.17 (Total variation distance) Let µ, ν be probability measure on (Ω,F).
The total variation distance between µ and ν is defined as

‖µ− ν‖TV = sup
A∈F
|µ(A)− ν(A)|.

Note this corresponds to taking D = {f : f = 1A, A ∈ F}.
In the countable case, we give an equivalent definition.

LEM 9.18 Assume Ω = S is countable and F = 2S . Then

‖µ− ν‖TV =
1

2

∑
ω∈Ω

|µ(ω)− ν(ω)|.

Proof: By the triangle inequality, for any A ⊆ Ω∑
ω∈Ω

|µ(ω)− ν(ω)| ≥ |µ(A)− ν(A)|+ |µ(Ac)− ν(Ac)| = 2|µ(A)− ν(A)|,

with equality when
A = {ω : µ(ω) ≥ ν(ω)}.
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4.2.1 Poisson convergence by the coupling method

We prove the following refinement of the Poisson convergence theorem.

THM 9.19 For some n, let Xn,m, 1 ≤ m ≤ n, be independent with P[Xn,m =
1] = pn,m and P[Xn,m = 0] = 1− pn,m. Then

‖µSn − µZ‖TV ≤
n∑

m=1

p2
n,m,

where Sn =
∑n

m=1Xn,m and Z ∼ Poi(λ =
∑

m≤n pn,m).

We will use coupling to prove the previous theorem. We restrict ourselves to a
countable space Ω = S and F = 2S . We let ∆(S) be the set of all PMs on S.

DEF 9.20 (Coupling of RVs) A coupling of µ, ν ∈ ∆(S) is a pair of S-valued
RVs (X,Y ) ∈ S2 (defined on a joint probability space) such that X ∼ µ and
Y ∼ ν.

EX 9.21 Let S = {0, 1}. Assume µ = ν. Then X ∼ ν, Y ∼ ν independent
defines a coupling. So does X = Y . If µ 6= ν, the latter is not possible. In order
to maximize the probability that P[X = Y ] one can choose P[X = Y = ω] =
µ(ω) ∧ ν(ω), P[X = 1, Y = 0] = (ν(0) − µ(0))+ and P[X = 0, Y = 1] =
(µ(0)− ν(0))+.

The following lemma gets us closer to our goal.

LEM 9.22 (Coupling lemma) Let (X,Y ) be any coupling of µ, ν ∈ ∆(S). Then

‖µ− ν‖TV ≤ P[X 6= Y ].

Proof: Note

µ(s) = P[X = s]

= P[X = s,X 6= Y ] + P[X = s, Y = s]

≤ P[X = s,X 6= Y ] + P[Y = s]

≤ P[X = s,X 6= Y ] + ν(s).

Similarly
(ν(s)− µ(s))+ ≤ P[Y = s,X 6= Y ],

so
|µ(s)− ν(s)| ≤ P[X = s,X 6= Y ] + P[Y = s,X 6= Y ].
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Summing over y gives the result.
(We also give an optimal coupling. Note that

1 =
∑
ω∈Ω

[µ(ω)∧ν(ω) + (µ(ω)−ν(ω))+] =
∑
ω∈Ω

[µ(ω)∧ν(ω) + (ν(ω)−µ(ω))+],

so that ∑
ω∈Ω

µ(ω) ∧ ν(ω) = 1− ‖µ− ν‖TV.

Consider the following sub-intervals of (0, 1). Divide up (0, 1− ‖µ− ν‖TV) into
disjoint intervals Iω of length µ(ω)∧ν(ω). Similarly, divide up (1−‖µ−ν‖TV, 1)
into disjoint intervals Jω (respectively Kω) of length µ(ω) (respectively ν(ω)).
Then a coupling achieving ‖µ − ν‖TV = P[X 6= Y ] is obtained by picking U
uniformly at random from (0, 1) and assigning X = Y = ω if U ∈ Iω, or X =
ω1, Y = ω2 if U ∈ Jω1 ∩Kω2 . )

We come back to the proof of the theorem.
Proof: By the coupling lemma, it suffices to find a coupling with high agreement
probability. For each 1 ≤ m ≤ n, we define

P[Xn,m = x, Yn,m = y] =


1− pn,m if x = y = 0,

e−pn,m − 1 + pn,m if x = 1, y = 0,

e−pn,m pyn,m

y! if x = 1, y ≥ 1.

The marginal of Xn,m is Bernoulli with parameter pn,m and the marginal of Yn,m
is Poisson with parameter pn,m. (The goal is to make them as close as possible in
distribution.) Therefore

Z =d Tn =
∑

1≤m≤n
Yn,m ∼ Poi(λ).
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We compute the disagreement probability. Note

P[Sn 6= Tn] ≤
∑
m≤n

P[Xn,m 6= Yn,m]

=
∑
m≤n

[e−pn,m − 1 + pn,m + P[Yn,m ≥ 2]]

=
∑
m≤n

[e−pn,m + pn,m − P[Yn,m ≤ 1]]

=
∑
m≤n

[e−pn,m + pn,m − e−pn,m − pn,me−pn,m ]

=
∑
m≤n

pn,m[1− e−pn,m ]

≤
∑
m≤n

p2
n,m.

EX 9.23 (Poisson approximation to the binomial) Assume pn,m = λ/n for all
m. Then

‖Bin(n, λ/n)− Poi(λ)‖TV ≤
λ2

n
.

4.3 Example with dependence

EX 9.24 (Matching) Let Sn =
∑n

m=1Xn,m be the number of fixed points in a
uniform random permutation, where Xn,m = 1 if m is a fixed point. We want to
compute P[Sn = k]. Note that we cannot apply the previous theorem because of
the lack of independence. However, a Poisson limit with λ = 1 seems natural. We
will need the following lemma.

LEM 9.25 (Inclusion-exclusion formula) Let A1, A2, . . . , An be events and A =
∪ni=1Ai. Then

P[A] =

n∑
i=1

P[Ai]−
∑
i<j

P[Ai ∩Aj ]

+
∑
i<j<k

P[Ai ∩Aj ∩Ak]− · · ·+ (−1)n−1P[∩ni=1Ai].

(Moreover, truncating the sum at any term gives an upper bound if the next term is
negative and a lower bound if the next term is positive.)
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Proof: Expand 1A = 1−
∏n
i=1(1− 1Ai) and take expectation. See [D].

Let Am = {Xn,m = 1}. Then

P[A] = n
(n− 1)!

n!
−
(
n

2

)
(n− 2)!

n!
+

(
n

3

)
(n− 3)!

n!
− · · ·

So

P [Sn > 0] =
n∑

m=1

(−1)m−1

m!
,

and

P [Sn = 0] =
n∑

m=0

(−1)m

m!
.

Note that the first two terms cancel each other out. Hence

|P[Sn = 0]− e−1| =

∣∣∣∣∣
+∞∑

m=n+1

(−1)m

m!

∣∣∣∣∣
≤ 1

(n+ 1)!

∣∣∣∣∣
∞∑
k=0

1

(n+ 2)k

∣∣∣∣∣
=

1

(n+ 1)!

(
1− 1

n+ 2

)−1

.

Finally,

P[Sn = k] =

(
n

k

)
1

n(n− 1) · · · (n− k + 1)
P[Sn−k = 0]

=
1

k!
P[Sn−k = 0]

→ e−1

k!
.
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