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1 Overview

In the last lecture we stated the Hanson-Wright inequality.

In this lecture we explore some useful tricks that will be helpful in proving the Hanson-Wright
inequality.

Theorem 1 (Hanson-Wright inequality (Thm 6.2.1. in Vershynin)). Let X = (X1, . . . , Xn) ∈ Rn
be a random vector with independent, mean zero, sub-gaussian coordinates. Let A be an n × n
matrix. Then, for every t ≥ 0, we have

P{|XTAX − EXTAX| ≥ t} ≤ 2 exp
[
− cmin

( t2

K4||A||2F
,

t

K2||A||
)]
,

where K = maxi ||Xi||ψ2.

Recall the following lemma, which we apply later today,

Lemma 2 (Pulled from previous lecture). Let Y and Z be independent random variables with
EZ = 0. Then for every convex function F

E
[
F (y)

]
≤ E

[
F (Y + Z)

]

1



2 Useful Tricks for Proving Hanson-Wright Inequality

Setting: Let A be an n × n matrix and X
∼

= (X1, . . . , Xn) where coordinates are independent,

zero-mean and sub-gaussian. Our objective is to prove a concentration inequality for X
∼
TAX
∼
.

2.1 Idea 1: Decoupling

Theorem 3 (Decoupling (Thm 6.1.1. in Vershynin)). Let A be an n×n, diagonal-free matrix (i.e.
the diagonal entries of A equal zero). Let X

∼
= (X1, . . . , Xn) be a random vector with independent

mean zero coordinates Xi. Then, for every convex function F : R→ R, one has

EF (X
∼
TAX
∼
) ≤ EF (4X

∼
TAX
∼
′)

where X
∼
′ is an independent copy of X

∼
.

Proof. Note: For any subset of indices I ⊆ [n]∑
(i,j)∈I×IC

aijXiXj
D
=

∑
(i,j)∈I×IC

aijXiX
′
j

because coordinates are independent.

Let

δi =

{
0 w.p. 0.5 ∀i ∈ [n] independently

1 w.p. 0.5

and I = {i : δi = 1}.

Note:

E
[ ∑
(i,j)∈I×IC

aijXiXj

∣∣X
∼

]
=E
[∑
i 6=j

δi(1− δj)aijXiXj

∣∣X
∼

]
=
∑
i 6=j

aijXiXjE
[
δi(1− δj)

]︸ ︷︷ ︸
i 6=j =⇒ δi independent of δj

=
∑
i 6=j

aijXiXj

4

We now turn our attention to

E
[
F (4

∑
(i,j)∈I×IC

aijXiXj)

]
=E
[
E
[
4

∑
(i,j)∈I×IC

aijXiXj

∣∣X
∼

]]
(tower property)

≤E
[
F
(
E
[
4

∑
(i,j)∈I×IC

aijXiXj

∣∣X
∼

])]
(By Jensen’s)

=E
[
F
(
X
∼
TAX
∼

)]
(?)
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Note: There exists a deterministic set J ⊆ [n] such that (?) holds with I = J .

To complete the sum, write

X
∼
TAX
∼

=
∑

(i,j)∈J×JC

aijXiX
′
j︸ ︷︷ ︸

=y

+
∑

(i,j)∈J×J

aijXiX
′
j︸ ︷︷ ︸

=z1

+
∑

(i,j)∈JC×[n]

aijXiX
′
j︸ ︷︷ ︸

=z2

Let g = σ
(
(Xi)i∈J , (X

′
i)i∈JC . Then y ∈ g (i.e. y is g-measurable) and

E[z1|g] = 0 = E[z2|g]

Applying the lemma from the previous lecture (see top of notes), we have

F (4y) ≤ E
[
F (4y + 4z1 + 4z2)|g

]
Taking the expectation of both sides yields the result.

2.2 Idea 2: Comparison

Note: We use this to bound the moment generating function.

Theorem 4 (Comparison (Thm 6.2.3 in Vershynin)). Assuming the general setting described above
with the addition of K = maxi ||Xi||ψ2 < +∞. Let g, g′ ∼ N(0, In) independent. Then

E
[
exp (λX

∼
TAX
∼
′)

]
≤ E

[
exp (cλk2gTAg′)

]

Proof. Write Y = AX
∼
′.

E
[
exp (λX

∼
TAX
∼
′)
∣∣X
∼
′
]
=E
[
exp

(
λ

n∑
i=1

XiYi
)∣∣X
∼
′
]

=
n∏
i=1

E
[
exp

(
λXiYi

)∣∣X
∼
′
]

≤
n∏
i=1

exp
(
cK2λ2Y 2

i

)
=exp

(
cK2λ2||AX

∼
′||22
)

Now replacing X by g and using the moment generating function of normal random variables we
get

E
[
exp (µgTAX ′)|X ′

]
= exp

(1
2
µ2||AX ′||22

)
and selecting µ =

√
2cKλ we get the desired result

E
[
exp (λXTAX ′)

]
≤ E

[
exp (

√
2cKλgTAX ′)

]
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