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Lecture 10 — September 29, 2021
Sebastien Roch, UW-Madison Scribe: Liam Johnston

1 Overview

In the last lecture we stated the Hanson-Wright inequality.

In this lecture we explore some useful tricks that will be helpful in proving the Hanson-Wright
inequality.

Theorem 1 (Hanson-Wright inequality (Thm 6.2.1. in Vershynin)). Let X = (Xy,...,X,) € R"
be a random wvector with independent, mean zero, sub-gaussian coordinates. Let A be an n X n
matriz. Then, for every t > 0, we have
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Recall the following lemma, which we apply later today,

Lemma 2 (Pulled from previous lecture). Let Y and Z be independent random variables with
EZ = 0. Then for every convex function F

E[F(y)] <E[F(Y +2)]



2 Useful Tricks for Proving Hanson-Wright Inequality

Setting: Let A be an n x n matrix and X = (Xy,...,X,) where coordinates are independent,

zero-mean and sub-gaussian. Our objective is to prove a concentration inequality for X7 AX.

2.1 Idea 1: Decoupling

Theorem 3 (Decoupling (Thm 6.1.1. in Vershynin)). Let A be an n x n, diagonal-free matriz (i.e.
the diagonal entries of A equal zero). Let X = (X1,...,X,) be a random vector with independent

mean zero coordinates X;. Then, for every conver function F : R — R, one has
EF(XTAX) <EF(4XTAX')

where X' is an independent copy of X.

Proof. Note: For any subset of indices I C [n]
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because coordinates are independent.

Let

5 — {0 w.p. 0.5 Vi € [n] independently

1 w.p. 0.5
and I = {i:0; = 1}.

Note:
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We now turn our attention to

E[F(zl > ainin)] =E|E[4 ) ainin]Xﬂ (tower property)
(i) EIXIC L (ij)elxIC -

<E F(E [4 Z anlX]‘)N(])} (By Jensenvs)
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Note: There exists a deterministic set J C [n] such that (x) holds with [ = J.

To complete the sum, write

XTAX = ) agXiXj+ > ayXXj+ ) aXiX]
(i,5)eIx JC (3,5)eIxJ (1,5)€JC x[n]
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Let g = 0((Xi)ies, (X])icje. Then y € g (i.e. y is g-measurable) and
E[21l9] = 0 = E[22]g]
Applying the lemma from the previous lecture (see top of notes), we have

F(4y) < E[F(4y + 421 + 429)]g]
Taking the expectation of both sides yields the result. O

2.2 1Idea 2: Comparison

Note: We use this to bound the moment generating function.

Theorem 4 (Comparison (Thm 6.2.3 in Vershynin)). Assuming the general setting described above
with the addition of K = max; || X;||y, < +00. Let g,¢' ~ N(0,1I,,) independent. Then

E {exp ()\XTAX')] <E {exp (c)\kZQTAg’)]
Proof. Write Y = AX'.
E [ exp (AXTAX) ]X’] =E [exp (A xv) \X’]

=1

:ﬁE [exp (AX3Y;) \)N(’}

i=1
n
< H exp (CKQ)\QYZ-Q)
=1
= exp (cK2N%||AXT||3)

Now replacing X by g and using the moment generating function of normal random variables we
get

1
E[exp (ng" AX)|X'] = exp (57| AX][3)
and selecting 1 = v2cK\ we get the desired result
E[exp (AXTAX')] <E[exp (V2cKAg" AX")]
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