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1 Overview

In the last lecture we reviewed the properties of conditional expectations, proved a useful result in
Lemma 1, lecture 9:

EF (Y ) ≤ EF (Y + Z),

where function F is convex, Y and Z are independent, EZ = 0. Furthermore, we introduced
the symmetrization method with corresponding lemma, and discussed the main idea of proving
Hanson-Wright inequality.

The proof of Hanson-Wright inequality relies on two steps, the decoupling step and the comparison
step. In this lecture we will prove a helpful result for Hanson-Wright inequality at each step.

2 Main Section

Our aim is to proof Hanson-Wright inequality inequality, let’s review the theorem.

Theorem 1. (Theorem 6.2.1 in [1] Hanson-Wright inequality) Let X = (X1, X2, ...Xn) ∈ Rn
be a random vector with independent, mean-zero, sub-gaussian coordinates. Let A be an n × n
deterministic matrix. Then, for every t ≥ 0, we have

P{|XTAX − EXTAX| ≥ t} ≤ 2exp[−c min(
t2

K4||A||2F
,

t

K2||A||
)]

where K = maxi||Xi||ψ2

2.1 Decoupling

Theorem 2 (Theoeorem 6.1.1 in [1]). Let A be an n × n deterministic matrix with 0 diagonal,
that is, aii = 0, for all i = 1, 2, . . . , n. Let X = (X1, X2, . . . , Xn) ∈ Rn be a random vector with
independent, mean-zero coordinates Xi. Then for every convex function F

E
(
F (XTAX)

)
≤ E

(
F (4XTAX

′
)
)
,

where X
′
is an independent copy of X.
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Proof. The notation [n] represents the set {1, 2, . . . , n}. Note that for any subset of indices I ⊂ [n]

∑
(i,j)∈I×Ic

aijXiXj
d
=

∑
(i,j)∈I×Ic

aijXiX
′
j , (1)

where Ic = [n] \ I. Because equation (1) can be rewritten as XT
I AXIc

d
= XT

I AX
′
Ic , where the i-th

coordinate of vector XI is Xi if i ∈ I, otherwise, it is 0.

Let δi i = 1, 2, . . . , n be independent fair Bernoulli random variables and they are independent of
X and X

′
. Namely, P(δi = 0) = P(δi = 1) = 1

2 . Now, set I = {i : δi = 1, i ∈ [n]}, the set I is a
discrete random subset of [n]. Note

E
( ∑

(i,j)∈I×Ic
aijXiXj |X

)
= E

(∑
i 6=j

δi(1− δj)aijXiXj |X
)

(δi(1− δj) 6= 0 iff (i, j) ∈ I × Ic)

=
∑
i 6=j

aijXiXjE
(
δi(1− δj)

)
(δi are independent of X)

=
∑
i 6=j

1

4
aijXiXj =

1

4
XTAX. (Eδi =

1

2
)

In addition, we have

E
(
F
(
4

∑
(i,j)∈I×Ic

aijXiX
′
j

))
= E

(
F
(
4

∑
(i,j)∈I×Ic

aijXiXj

))
(By equation (1) )

= E

[
E
(
F
(
4

∑
(i,j)∈I×Ic

aijXiXj

)
|X
)]

(Tower property)

≥ E

[
F
(
E
(
4

∑
(i,j)∈I×Ic

aijXiXj |X
))]

(Jensen’s inequality)

= E
(
F (XTAX)

)
. (Tower property and previous result)

Conditional on random set I on left hand side, since δi are independent of X and X
′
, and I is

discrete, the average (the expectation) satisfies the inequality implies there exist a deterministic
set J ⊂ [n] such that

E
(
F
(
4

∑
(i,j)∈J×Jc

aijXiX
′
j

))
≥ E

(
F (XTAX)

)
. (2)

To compute the sum

XTAX
′

=
∑

(i,j)∈J×Jc

aijXiX
′
j +

∑
(i,j)∈J×J

aijXiX
′
j +

∑
(i,j)∈Jc×[n]

aijXiX
′
j .

Set Y =
∑

(i,j)∈J×Jc

aijXiX
′
j , Z1 =

∑
(i,j)∈J×J

aijXiX
′
j , and Z2 =

∑
(i,j)∈Jc×[n]

aijXiX
′
j .
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Let G = σ
(

(Xi)i∈J , (X
′
i)i∈Jc

)
, then Y is G-measurable, and

E(Z1|G) = E(Z2|G) = 0,

since for any (i, j) ∈ J × J , E(aijXiX
′
j |G) = aijXiE(X

′
j) = 0 by tower property and X

′
j is inde-

pendent of G. For other cases, by similar argument, we can obtain the zero mean conclusion as
well.

Using Jensen’s inequality to conclude that

E
(
F (4Y + 4Z1 + 4Z2)|G

)
≥ F

(
E(4Y + 4Z1 + 4Z2|G)

)
= F (4Y ).

Taking expectation for both sides and we combine inequality (2), we get

E
(
F (4XTAX

′
)
)

= E

[
E
(
F (4Y + 4Z1 + 4Z2)|G

)]
≥ E

(
F (4Y )

)
≥ E

(
F (XTAX)

)
.

2.2 Comparison

Theorem 3 (Lemma 6.2.3 in [1]). Let A be an n× n matrix and X = (X1, X2, . . . , Xn) ∈ Rn be a
random vector with independent, sub-Gaussian, mean-zero coordinates Xi. Let independent vectors
g, g

′ ∼ N(0, In), and assume K = maxi‖Xi‖Ψ2 <∞. Then there exists a constant C such that

E exp(λXTAX
′
) ≤ E exp(CK2λgTAg

′
),

for any λ ∈ R, where X ′
is independent copy of X and independent of g and g

′
.

Proof. Write Y = (Y1, Y2, . . . , Yn) = AX
′
, then by independent of Xi we get

E
(

exp(λXTAX
′
)|X ′

)
= E

(
exp(λ

n∑
i=1

XiYi)|X
′
)

=
n∏
i=1

E
(

exp(λXiYi)|X
′
)
. (3)

K = maxi‖Xi‖Ψ2 <∞ and equivalent property of sub-Gaussian implies that there exists constant
c such that

n∏
i=1

E
(

exp(λXiYi)|X
′
)
≤

n∏
i=1

exp(cK2λ2Y 2
i ) = exp(cK2λ2‖AX ′‖22).

In equation (3), replace X by g, and compute by generating function of normal random variables
we get

E
(

exp(µgTAX
′
)|X ′

)
= exp(

1

2
µ2‖AX ′‖22).

Choosing µ =
√

2cKλ, we match two results

E exp(λXTAX
′
) ≤ E exp(

√
2cKλgTAX

′
).

Comparing to our statement, we replaced X by g and payed a factor of
√

2cK. In addition, by
symmetry, and arguing in a similar way, we can replace X

′
with g

′
and pay an extra factor of√

2cK. Then the proof is complete and C = 2c.
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