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1 Overview

In the last lecture we reviewed the properties of conditional expectations, proved a useful result in
Lemma 1, lecture 9:

EF(Y) <EF(Y + 2),

where function F' is convex, Y and Z are independent, EZ = 0. Furthermore, we introduced
the symmetrization method with corresponding lemma, and discussed the main idea of proving
Hanson-Wright inequality.

The proof of Hanson-Wright inequality relies on two steps, the decoupling step and the comparison
step. In this lecture we will prove a helpful result for Hanson-Wright inequality at each step.

2 Main Section

Our aim is to proof Hanson-Wright inequality inequality, let’s review the theorem.

Theorem 1. (Theorem 6.2.1 in [1] Hanson-Wright inequality) Let X = (X1, Xo,..X,,) € R"
be a random vector with independent, mean-zero, sub-gaussian coordinates. Let A be an n X n
deterministic matriz. Then, for every t > 0, we have
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P{|XTAX - EXTAX| >t} < 2exp[—c min(

where K = ma$i||Xi||¢2

2.1 Decoupling
Theorem 2 (Theoeorem 6.1.1 in [1]). Let A be an n x n deterministic matriz with 0 diagonal,

that is, a; = 0, for alli =1,2,...,n. Let X = (X1, X9,...,X,) € R" be a random vector with
independent, mean-zero coordinates X;. Then for every convex function F

E(F(XTAX)) < E(F(4XTAX’)),

where X' is an independent copy of X.



Proof. The notation [n] represents the set {1,2,...,n}. Note that for any subset of indices I C [n]
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where I¢ = [n] \ I. Because equation (1) can be rewritten as X7 AXe 4 XT AX., where the i-th
coordinate of vector X is X; if ¢ € I, otherwise, it is 0.

Let 6; 1 = 1,2,...,n be independent fair Bernoulli random variables and they are independent of

X and X'. Namely, P(J; = 0) = P(§; = 1) = 4. Now, set I = {i : §; = 1,7 € [n]}, the set [ is a
discrete random subset of [n]. Note

E( 3 ainin|X> - E(Z&i(l - 5j)a,~jXZ~Xj|X> (6:(1 = 8;) # 0iff (i, §) € I x I

(i.j)elxIe i#j
= ZaininE(éi(l —9;)) (6; are independent of X)
i#]
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= ; i XiX; = 7 XTAX. (B = 3)
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In addition, we have

E(F(4 Y ayXiX))=E(F(4 > ayXiX;)) (By equation (1))
(i,5)eIxIc (i,5)eIxIc

=E E(F(4 Z ainin)\X> (Tower property)
L (4,4)eIxIc i

>E F(E(4 3 ainin\X)) (Jensen’s inequality)
L (ij)EIxIe i

= E(F (XTAXx )) (Tower property and previous result)

Conditional on random set I on left hand side, since §; are independent of X and X " and T is
discrete, the average (the expectation) satisfies the inequality implies there exist a deterministic
set J C [n] such that

E(F(4 3 ainiX;)>2E(F(XTAX)). 2)
(i,5)eJxJ¢

To compute the sum

XTAX/ = z CLZ]XzXJ/ + Z CLUXZX], + Z CLZJXZX;

(3,5)eIxJ° (i,9)eIxJ (i,5)€Jex[n]
Set Y = Z ainiX;, Z1 = Z ainin/-, and Zy = Z CLZ‘jXZ‘XJ/-.
(i,5)eIxJ° (i,9)eIxJ (i,5)€Jex[n]



Let G = O’((Xi)ie], (X;)iejc), then Y is G-measurable, and

E(Z1|G) = E(Z2|G) = 0,

since for any (i,j) € J x J, E(ainiXﬂg) = aini]E(X;) = 0 by tower property and X]/- is inde-
pendent of G. For other cases, by similar argument, we can obtain the zero mean conclusion as
well.

Using Jensen’s inequality to conclude that

IE(F(4Y +4Z) + 422)|g> > F(E(4Y +4Z) + 422|g)) — F(4Y).
Taking expectation for both sides and we combine inequality (2), we get
E(F(4XTAX/)> —E

E(F(4Y Y47+ 422)\g) > E(F4Y)) > E(F(XTAX)). O

2.2 Comparison

Theorem 3 (Lemma 6.2.3 in [1]). Let A be an n x n matriz and X = (X1, Xo,...,X,,) € R be a
random vector with independent, sub-Gaussian, mean-zero coordinates X;. Let independent vectors
9,9 ~ N(0,1,), and assume K = max;|| X;|w, < oco. Then there exists a constant C such that

E exp()\XTAX/) <E exp(C’KQ)\gTAg/),

for any A € R, where X' is independent copy of X and independent of g and g .

Proof. Write Y = (Y1,Ya,...,Y,) = AX’', then by independent of X; we get
E(exp(AXTAX’)|X’> - E<exp(AZXm)\X’> - HE(exp()\XiY;)\X/). (3)
i=1 i=1

K = max;|| X;||w, < oo and equivalent property of sub-Gaussian implies that there exists constant
¢ such that

HE(exp(AXm)\X’) < [ exp(cK>NY?) = exp(cKN?| AX|3).
=1 =1

In equation (3), replace X by g, and compute by generating function of normal random variables
we get,

/ / 1 /
E(exp(ug”AX")|X") = exp(52AX[3).
Choosing 1 = v/2cK )\, we match two results
Eexp(AXTAX') < Eexp(vV2cK A gTAX).

Comparing to our statement, we replaced X by g and payed a factor of +/2cK. In addition, by
symmetry, and arguing in a similar way, we can replace X " with g/ and pay an extra factor of
V2cK. Then the proof is complete and C = 2c. O
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