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1 Overview

In the last lecture we presented the decoupling and comparison theorems which will be usefull in
the proof of the main result of this lecture: the Hanson-Wright inequality. We have the following
decoupling inequality. In the lecture we assumed that the diagonal elements of A are zero but the
same argument actually proves a stronger version without this assumption, see Remark 6.13 in [1].

Lemma 1 (Decoupling, Theorem 6.1.1 in [1]). Let A be an n×n matrix. Let X = (X1, X2, . . . , Xn) ∈
Rn be a random vector with independent, mean-zero coordinates Xi. Then for every convex function
F

E
[
F
(∑
i 6=j

aijXiXj

)]
≤ E

[
F (4XTAX ′)

]
,

where X
′
is an independent copy of X.

The following comparison lemma shows that we can essentially replace the sub-Gaussian random
variables X,X ′ in the MGF of the quadratic form XTAX ′ by Gaussians.

Lemma 2 (Comparison, Lemma 6.2.3 in [1]). Let A be an n×n matrix and X = (X1, X2, . . . , Xn) ∈
Rn be a random vector with independent, sub-Gaussian, mean-zero coordinates Xi. Let independent
vectors g, g

′ ∼ N(0, In), and assume K = maxi‖Xi‖Ψ2 < ∞. Then there exists a constant C such
that

E exp(λXTAX
′
) ≤ E exp(CK2λgTAg′),

for any λ ∈ R, where X ′ is independent copy of X and independent of g and g′.

2 Review of Matrix Norms and Singular Value Decomposition

We reviewed basic facts about matrix norms and the singular value decomposition. For details see
the slides on https://people.math.wisc.edu/~roch/mmids/.

3 The Proof of the Hanson-Wright Inequality

In this lecture, we will prove the Hanson-Wright Inequality. We first restate its statement and then
proceed to its proof.

Theorem 3 (Hanson-Wright). Let X = (X1, X2, ..., Xn) ∈ Rn be a random vector with indepen-
dent, mean-zero, sub-gaussian coordinates. Let A be an n × n matrix. Then, for every t ≥ 0, we
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have

P[|XTAX − E[XTAX]| ≥ t] ≤ 2 exp

(
−cmin

(
t2

K4||A||2F
,

t

K2||A||

))
,

where K = maxi ||Xi||ψ2 and c > 0 is some universal constant.

Proof. In what follows we have that X = (X1, . . . , Xn) is a random vector with independent mean-
zero coordinates and X ′ be an independent copy of X. We will use the decoupling and comparison
lemmas stated above. Moreover, we will use the following estimate on the MGF of quadratic forms
of independent Gaussian random variables.

Lemma 4 (Gaussian Chaos MGF). Let g, g′ ∼ N (0, In) be independent and A be an n×n matrix.
Then for any λ ∈ R, |λ| ≤ c/‖A‖2, we have

E[exp
(
λgTAg′

)
] ≤ exp

(
Cλ2‖A‖2F

)
.

We can decompose XTAX into a term involving the diagonal elements of A and one with the
off-diagonal:

XTAX =
∑
i,j

aijXiXj =
∑
i

aiiX
2
i +

∑
i 6=j

aijXiXj .

Since the Xi’s are independent, mean-zero random variables it holds that E[XTAX] =
∑

i aiiEX2
i .

Using the fact that for any two random variables X,Z it holds that P[X + Z ≥ t] ≤ P[X ≥
t/2]+P[Z ≥ t/2] we obtain the following upper bound on the tail probability of the quadratic form

P
[∣∣XTAX − E(XTAX))

∣∣ ≥ t] ≤ P

[
n∑
i=1

aii(X
2
i − EX2

i ) ≥ t/2

]
+ P

∑
i 6=j

aijXiXj ≥ t/2

 .
Step 1: diagonal sum. Xi’s are independent, sub-gaussian random variables, and therefore, the
random variables X2

i − EX2
i are centered (mean-zero), independent, and sub-exponential. Using

the fact that centering a random variable can only reduce its sub-exponential norm we obtain∥∥aii(X2
i − EX2

i )
∥∥

Ψ1
. |aii|‖X2

i ‖Ψ1 . |aii|‖Xi‖2Ψ2
. |aii|K2.

Thus we can apply Bernstein’s Inequality.

Lemma 5 (Bernstein’s inequality (Theorem 2.8.1 in [1])). Let X1, . . . , XN be independent, mean
zero, sub-exponential random variables. Then, for every t ≥ 0, we have

P

[∣∣∣∣∣
N∑
i=1

Xi

∣∣∣∣∣ ≥ t
]
≤ 2 exp

(
−cmin

{
t2∑N

i=1 ‖Xi‖2ψ1

,
t

maxi ‖Xi‖ψ1

})
,

where c > 0 is an absolute constant.

We can now bound the tail probability of the diagonal terms

P
[ n∑
i=1

aii(X
2
i − EX2

i ) ≥ t/2
]
≤ 2 exp

(
−cmin

(
t2

K4
∑

i a
2
ii

,
t

K2 maxi |aii|

))
≤ 2 exp

(
−cmin

(
t2

K4‖A‖2F
,

t

K2‖A‖2

))
,
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where we used the fact that maxi |aii| ≤ ‖A‖2 and that
∑

i a
2
ii ≤ ‖A‖2F . We move on to the off-

diagonal terms. Let S =
∑

i 6=j aijXiXj . By Markov’s Inequality, we have that for any λ > 0 it
holds that

P [S ≥ t/2] = P
[
eλS ≥ eλt/2

]
≤ exp(−λt/2)E[exp(λS)].

Given that |λ| ≤ c/‖A‖, we can use the Decoupling, the Comparison, and the MGF of Gaussian
Chaos lemmas to obtain

E[exp(λS)] ≤ E[exp(4λX>AX ′)] ≤ E[exp(C1K
2λg>Ag′)] ≤ exp

(
C2K

4λ2‖A‖2F
)
,

where C1, C2 are universal constants. Therefore, we obtain that P [S ≥ t/2] ≤ exp
(
−λt/2 + C2K

4λ2‖A‖2F
)
.

We can now pick the value of λ ∈ (0, c/‖A‖2), that maximizes the expression −λt/2+C2K
4λ2‖A‖2F

and obtain that

P [S ≥ t/2] ≤ 2 exp

(
−c1 min

(
t2

K4‖A‖2F
,

t

K2‖A‖2

))
,

for some other universal constant c1. To complete the proof we put together the above estimates for
the diagonal and off-diagonal tail probabilities and replace the corresponding universal constants
by another one.

As a corollary of the Hanson-Wright inequality we give the following theorem.

Theorem 6. (Concentration for Random Vectors, Thm 6.3.2 in [1]) Let X = (X1, X2, ...Xn) ∈ Rn
be a random vector with independent, mean-zero, sub-gaussian coordinates with K = max ‖Xi‖Ψ2 <
∞. Let B be an n×m matrix then it holds ‖‖BX‖2 − ‖B‖F ‖Ψ2

≤ CK2‖B‖.
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