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1 Overview

In the last lecture we presented the decoupling and comparison theorems which prepare us for the
proof of the Hanson-Wright Inequality.

In this lecture, we will prove the Hanson-Wright Inequality.

2 Hanson-Wright Proof and Applications

2.0 Review of Matrix Norms and Singular Value Decomposition

See Topic 2 on https://people.math.wisc.edu/~roch/mmids/ for details.

Recall that the Frobenius norm of an n×m matrix A ∈ Rn×m is defined as

‖A‖F =

√√√√ n∑
i=1

m∑
j=1

a2
ij .

Define Sm−1 = {x ∈ Rm : ‖x‖ = 1}. The induced 2-norm of a matrix A ∈ Rn×m is

‖A‖2 = max
0 6=x∈Rm

‖Ax‖
‖x‖

= max
x∈Sm−1

‖Ax‖.

The singular value decomposition (SVD) of a matrix A ∈ Rn×m is a matrix factorization

A = UΣV T =

r∑
j=1

σjujv
T
j ,

where the columns of U ∈ Rn×r and those of V ∈ Rm×r are orthonormal, and Σ ∈ Rr×r is a
diagonal matrix. Here the uj ’s are the columns of U and are referred to as left singular vectors.
Similarly the vj ’s are the columns of V and are referred to as right singular vectors. The σj ’s,
which are non-negative and in decreasing order

σ1 ≥ σ2 ≥ · · · ≥ σr > 0

are the diagonal elements of Σ and are referred to as singular values.
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2.1 Hanson-Wright Proof and Applications

Setting (*): let X = (X1, . . . , Xn) be a random vector with independent mean-zero coordinates
and X ′ be an independent copy of X. Let A be an n× n matrix.

Theorem 1. (Hanson-Wright Inequality) Suppose (*) holds and further K = max ‖Xi‖Ψ2 <∞, ∀i.
Then for every t ≥ 0, we have

P(
∣∣XTAX − E(XTAX))

∣∣ ≥ t) ≤ 2 exp

(
−cmin

(
t2

K4‖A‖2F
,

t

K2‖A‖2

))
.

Proof. We will use three lemmas:

L1 (Decoupling) Suppose (*) holds and further the diagonal entries of A are all zero. For any
convex function F , we have

E(F (XTAX)) ≤ E(F (4XTAX ′)).

Remark of L1 (Remark 6.1.3. in [V]) A slightly stronger version of decoupling inequality holds, in
which A needs not be diagonal-free. For any square matrix A = (aij), we have

EF

 ∑
i,j:i 6=j

aijXiXj

 ≤ EF

4
∑
i,j

aijXiX
′
j

 .

L2 (Comparison, Lemma 6.2.3 in [V]) Suppose (*) holds with ‖X‖ψ2
≤ K and ‖X ′‖ψ2

≤ K.
Consider also independent random vectors g, g′ ∼ N (0, In). Then for any λ ∈ R,

E(F (4XTAX ′)) ≤ E(exp
(
cK2gTAg′

)
).

L3 (Gaussian chaos, Lemma 6.2.2 in [V]) Let g, g′ ∼ N (0, In) be independent and A be an n × n
matrix. Then for any λ ∈ R, |λ| ≤ c/‖A‖2, we have

E(exp
(
λgTAg′

)
) ≤ exp

(
Cλ2‖A‖2F

)
.

We write
XTAX =

∑
i,j

aijXiXj =
∑
i

aiiX
2
i +

∑
i 6=j

aijXiXj .

It follows from independence and the mean-zero assumption that

E(XTAX) =
∑
i

aiiEX2
i .

The problem reduces to estimating the diagonal and off-diagonal sums:

P(
∣∣XTAX − E(XTAX))

∣∣ ≥ t) ≤ P

(
n∑
i=1

aii(X
2
i − EX2

i ) ≥ t/2

)
︸ ︷︷ ︸

p1

+P

∑
i 6=j

aijXiXj ≥ t/2


︸ ︷︷ ︸

p2

.

(Diagonal sum) Note that by centering∥∥aii(X2
i − EX2

i )
∥∥

Ψ1
. |aii|‖X2

i ‖Ψ1 . |aii|‖Xi‖2Ψ2
. |aii|K2.
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Applying Bernstein’s Inequality,

p1 ≤ 2 exp

(
−cmin

(
t2

K4
∑

i a
2
ii

,
t

K2 maxi |aii|

))
≤ 2 exp

(
−cmin

(
t2

K4‖A‖2F
,

t

K2‖A‖2

))
.

(Off diagonal sum) Let S =
∑

i 6=j aijXiXj . By Chebyshev’s Inequality, for any λ > 0

p2 = P (S ≥ t/2) = P
(
eλS ≥ eλt/2

)
≤ exp(−λt/2)E(exp(λS)).

Now,

E exp(λS) ≤ E exp
(

4λX>AX ′
)

(by L1)

≤ E exp
(
C1λg

>Ag′
)

(by L2)

≤ exp
(
Cλ2‖A‖2F

)
(by L3),

provided that |λ| ≤ c/‖A‖.

Hence,
p2 ≤ exp

(
−λt/2 + Cλ2‖A‖2F

)
.

Optimize over 0 < λ ≤ c/‖A‖, we conclude that

p2 ≤ 2 exp

(
−c′min

(
t2

K4‖A‖2F
,

t

K2‖A‖2

))
.

We complete the proof by putting together the diagonal part p1 and the off-diagonal part p2.

We have the following theorem as a consequence of the Hanson-Wright Inequality:

Theorem 2. (Concentration for random vectors, Thm 6.3.2 in [V]) Suppose (*) holds and further
K = max ‖Xi‖Ψ2 <∞, ∀i. Let B be an n×m matrix. Then

‖‖BX‖2 − ‖B‖F ‖Ψ2
≤ CK2‖B‖.

Proof. See Vershynin’s textbook.

References

[1] R.Vershynin, High-dimensional probability: An introduction with applications in data science,
Cambridge university press, 2008.

3


	Overview
	Hanson-Wright Proof and Applications
	Review of Matrix Norms and Singular Value Decomposition
	Hanson-Wright Proof and Applications


