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Lecture 11 — October 1, 2021
Sebastien Roch, UW-Madison Scribe: Changyu Gao

1 Overview

In the last lecture we presented the decoupling and comparison theorems which prepare us for the
proof of the Hanson-Wright Inequality.

In this lecture, we will prove the Hanson-Wright Inequality.

2 Hanson-Wright Proof and Applications

2.0 Review of Matrix Norms and Singular Value Decomposition

See Topic 2 on https://people.math.wisc.edu/~roch/mmids/ for details.

Recall that the Frobenius norm of an n x m matrix A € R**™ is defined as
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Define S ! = {x € R™ : ||x|| = 1}. The induced 2-norm of a matrix A € R"*™ is

A
= max | Ax] = max [Ax].
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The singular value decomposition (SVD) of a matrix A € R™*™ is a matrix factorization
T
A=UxVT = Zajujv;‘»r,
j=1

where the columns of U € R™ " and those of V' € R™*" are orthonormal, and ¥ € R™" is a
diagonal matrix. Here the u; ’s are the columns of U and are referred to as left singular vectors.
Similarly the v; ’s are the columns of V' and are referred to as right singular vectors. The o; s,
which are non-negative and in decreasing order

o1>022>---2>0,>0

are the diagonal elements of 3 and are referred to as singular values.


https://people.math.wisc.edu/~roch/mmids/

2.1 Hanson-Wright Proof and Applications
Setting (*): let X = (X1,...,Xy) be a random vector with independent mean-zero coordinates
and X’ be an independent copy of X. Let A be an n X n matrix.

Theorem 1. (Hanson-Wright Inequality) Suppose (*) holds and further K = max || X;||v, < 0o, Vi.
Then for every t > 0, we have
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Proof. We will use three lemmas:

L1 (Decoupling) Suppose (*) holds and further the diagonal entries of A are all zero. For any
convex function F', we have

E(F(XTAX)) <E(F(4XTAX")).

Remark of L1 (Remark 6.1.3. in [V]) A slightly stronger version of decoupling inequality holds, in
which A needs not be diagonal-free. For any square matrix A = (a;;), we have
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L2 (Comparison, Lemma 6.2.3 in [V]) Suppose (*) holds with || X||,, < K and [|X'[|,, < K.
Consider also independent random vectors g,¢g’ ~ N (0, I,,). Then for any A € R,

E(F(4XTAX')) < E(exp (cK?g" Ag')).

L3 (Gaussian chaos, Lemma 6.2.2 in [V]) Let g,¢' ~ N (0, I,,) be independent and A be an n x n
matrix. Then for any A € R, |A\| < ¢/|/Al|2, we have

E(exp (AgTAg')) < exp (C)\ZHAH%) .

We write
XTAX = Zainin = Za“X? + Zainin.
irj i i#j
It follows from independence and the mean-zero assumption that
E(XTAX) =) a;EX}.
i

The problem reduces to estimating the diagonal and off-diagonal sums:

P(|XTAX —E(XTAX))| >t) <P (Z ai(X? —EX?) > t/2> +P ) i XiX; > t/2
i=1 ]
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(Diagonal sum) Note that by centering

ai(X? = EXD)| g, S laalll X v, $ laulll Xalld, < laulK>.

2



Applying Bernstein’s Inequality,
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(Off diagonal sum) Let S = Z# ;@i X;X;. By Chebyshev’s Inequality, for any A > 0

py=P(S>1t/2) =P <e)‘5 > eW) < exp(—At/2)E(exp(\S)).
Now,
Eexp(\S) < Eexp (4/\XTAX’) (by L1)
< Eexp (Cl)\gTAg/) (by L2)
<exp (CN?|| A7) (by L3),
provided that |A| < ¢/||A]|.

Hence,
P2 < exp (=At/2+ CA2[|A||%).

Optimize over 0 < A < ¢/||A||, we conclude that

t2 t
p2 < 2exp (—c’ min ( , )) .
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We complete the proof by putting together the diagonal part p; and the off-diagonal part ps.

We have the following theorem as a consequence of the Hanson-Wright Inequality:

Theorem 2. (Concentration for random vectors, Thm 6.3.2 in [V]) Suppose (*) holds and further
K = max || X;||w, < 0o, Vi. Let B be an n x m matriz. Then

IIBX |2 = | Bllrlly, < CK?|B]|.

Proof. See Vershynin’s textbook. O
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