

1 Overview

In the last lecture we introduced isotropic random vectors and sub-Gaussian random vectors. We proved that if a vector has independent, mean-zero, sub-Gaussian entries then it is a sub-Gaussian proved that if a vector has independent, mean-zero, sub-statistical entries then it is a sub-statistical vector. We also showed that the uniform random vector on the *n*-dimensional sphere of radius \sqrt{n} centered at the origin is sub-Gaussian. Note that the vectors in the second example have dependent coordinates and are scaled according to the dimension.

In this lecture we discussed tail inequalities for the norm of sub-Gaussian vectors and applied the inequality to estimate the mean of sub-Gaussian vectors.

2 Tail inequalities for the norm of sub-Gaussian vectors

Recall that the sub-Gaussian norm of a random vector $X \in \mathbb{R}^n$ is defined as

$$
||X||_{\psi_2} := \sup_{u \in \mathbb{S}^{n-1}} ||\langle X, u \rangle||_{\psi_2},
$$

where $\mathbb{S}^{n-1} = \{u \in \mathbb{R}^n : ||u||_2 = 1\}$. We began with the following Hanson-Wright inequality.

Theorem 1 (Norm of sub-Gaussian vectors: anisotropic case). If X is a mean-zero, sub-Gaussian random vector in \mathbb{R}^n with $||X||_{\psi_2} = K$. Let B be an $m \times n$ matrix. Then for any $t \geq 0$ we have

$$
\mathbb{P}\left(\|BX\|_2^2 \ge CK^2 \|B\|_F^2 + t\right) \le \exp\left(-\frac{ct}{K^2 \|B\|_2^2}\right),\tag{1}
$$

$$
\mathbb{P}\left(\|BX\|_2 \geq CK\|B\|_F + t\right) \leq \exp\left(-\frac{ct^2}{K^2\|B\|_2^2}\right),\tag{2}
$$

where $\|\cdot\|_F$ and $\|\cdot\|_2$ denote the Frobenius norm, and operator norm respectively.

Proof. The proof is left as an exercise. See Exercises 6.2.6 and 6.3.5 in [1]. \Box

Remarks:

1. If we assume further that the coordinates of X are independent, sub-Gaussian, and unit variance, then we have

$$
\mathbb{E}(\|BX\|_2^2) = \|B\|_F^2,
$$

and for any $t \geq 0$,

$$
\mathbb{P}\left(\left|\|BX\|_2 - \|B\|_F\right| > t\right) \le \exp\left(-\frac{ct^2}{K^4 \|B\|_2^2}\right). \tag{3}
$$

Note that the bound (3) also implies

$$
|\mathbb{E}(\|BX\|_2) - \|B\|_F| \leq C K^2 \|B\|_2,
$$

which can be checked by integrating the tail probabilities.

- 2. When $t \gtrsim K||B||_F$, the upper tails of (2) and (3) exhibit a similar behavior.
- 3. The next example shows that the concentration inequality (3) might fail if we drop the independence assumption.

Example: Let $B = I_n$, then $||B||_F^2 = n$, $||B||_2 = 1$. Let w be a random vector uniformly distributed on \mathbb{S}^{n-1} , and let z be a random variable that satisfies $\mathbb{P}(z = 0) = \mathbb{P}(z = 1) = \frac{1}{2}$ and independent of w. Consider the vector defined by $X = \sqrt{2nzw}$. By symmetry and the assumption that $w \in \mathbb{S}^{n-1}$, we have $\mathbb{E}(w_i) = 0$ and $1 = \mathbb{E}(\sum_{i=1}^n w_i^2) = n\mathbb{E}(w_1^2)$. Therefore, assumption that $w \in S^{\infty}$, we have $\mathbb{E}(w_i) = 0$ and $1 = \mathbb{E}(\sum_{i=1}^{\infty} w_i^2) = n\mathbb{E}(w_1^2)$. Therefore $\mathbb{E}(X_i) = 0$ and $\mathbb{E}(X_i^2) = n\mathbb{E}(w_i^2) = 1$. Note that by definition $|X_1| \leq \sqrt{2n}|w_1|$ a.s., hence

$$
||X||_{\psi_2} = ||\langle X, e_1 \rangle||_{\psi_2} = ||X_1||_{\psi_2} \lesssim ||\sqrt{n}w_1||_{\psi_2} \lesssim C,
$$

where the step follows from Lecture 12. The coordinates of X are sub-Gaussian and unit variance (but not independent). It is direct to check that the expectation of $||X||_2$ satisfies $\mathbb{E}(\|X\|_2) = \sqrt{n/2}$, which is not centered around $\|B\|_F = \sqrt{n}$. The concentration inequality (3) does not hold.

3 An application: mean estimation of sub-Gaussian vectors

Theorem 2 (Mean estimation of sub-Gaussian vectors). Let $X^{(1)}, X^{(2)}, \dots, X^{(n)} \in \mathbb{R}^p$ be i.i.d. random vectors with $||X^{(i)}||_{\psi_2} = K$, $\mathbb{E}(X^{(i)}) = \mu$. Let $\bar{X} := \frac{1}{n} \sum_{i=1}^n X_i^{(i)}$ be the empirical mean. Then the event $\{\|\bar{X} - \mu\|_2 \leq \epsilon\}$ happens with probability $1 - \delta \hat{if} \overline{n} \gtrsim (\frac{K}{\epsilon})$ $\frac{K}{\epsilon}$)² $(p + \log(\frac{1}{\delta}))$.

Proof. Define $Y^{(i)} = \frac{1}{n}$ $\frac{1}{n}(X^{(i)} - \mu)$ and $Y = \sum_{i=1}^{n} Y^{(i)} = \overline{X} - \mu$. Then $\mathbb{E}(Y) = 0$ and Y is a sum of independent, mean-zero, sub-Gaussian vectors. For $u \in \mathbb{S}^{p-1}$, we have

$$
\begin{aligned} \|\langle Y^{(i)}, u \rangle \|_{\psi_2} &= \|\langle \frac{1}{n} (X^{(i)} - \mu), u \rangle \|_{\psi_2} \\ &\lesssim \frac{1}{n} \|\langle X^{(i)}, u \rangle \|_{\psi_2} \qquad \text{(by Lemma 2.6.8 in [1])} \\ &\lesssim \frac{K}{n} .\end{aligned}
$$

Since $\langle Y, u \rangle$ is a sum of independent, mean zero, sub-Gaussian random variables, we have by Proposition 2.6.1 in [1] that

$$
\|\langle Y, u \rangle\|_{\psi_2}^2 \lesssim \sum_{i=1}^n \|\langle Y^{(i)}, u \rangle\|_{\psi_2}^2 \lesssim \frac{K^2}{n},
$$

which implies that $||Y||_{\psi_2} \leq K/\sqrt{n}$. Note that a similar estimation was used when we proved the Hoeffding's inequality. Apply Theorem 1 (in particular the inequality (1)) to Y, $B = I_p$ and $t = CK^2 \log(\frac{1}{\delta})/n$, we get

$$
\mathbb{P}\left(\|Y\|_2^2 \ge C \frac{K^2}{n} \Big(p + \log(\frac{1}{\delta})\Big) \right) \le \exp\left(- \frac{cC\frac{K^2}{n} \log(\frac{1}{\delta})}{\frac{K^2}{n}} \right) \lesssim \delta
$$

for large enough C. Therefore, the event $\{\|\bar{X} - \mu\|_2 \geq \epsilon\}$ happens with probability at most δ if $n \geq \left(\frac{K}{\epsilon}\right)$ $\frac{K}{\epsilon}$)²(*p* + log($\frac{1}{\delta}$)). This completes the proof. \Box

References

[1] R. Vershynin, High-Dimensional Probability: An introduction with Applications in Data Science, Cambridge University Press, 2008.