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1 Overview

In the last lecture we introduced isotropic random vectors and sub-Gaussian random vectors. We
proved that if a vector has independent, mean-zero, sub-Gaussian entries then it is a sub-Gaussian
vector. We also showed that the uniform random vector on the n-dimensional sphere of radius /n
centered at the origin is sub-Gaussian. Note that the vectors in the second example have dependent
coordinates and are scaled according to the dimension.

In this lecture we discussed tail inequalities for the norm of sub-Gaussian vectors and applied the
inequality to estimate the mean of sub-Gaussian vectors.

2 Tail inequalities for the norm of sub-Gaussian vectors

Recall that the sub-Gaussian norm of a random vector X € R" is defined as

[ X[y i= sup [|(X; )|y,
uesSn—1

where S"~! = {u € R" : ||lul]z = 1}. We began with the following Hanson-Wright inequality.

Theorem 1 (Norm of sub-Gaussian vectors: anisotropic case). If X is a mean-zero, sub-Gaussian
random vector in R™ with || X ||y, = K. Let B be an m x n matriz. Then for any t > 0 we have
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where || - ||p and || - |2 denote the Frobenius norm, and operator norm respectively.

Proof. The proof is left as an exercise. See Exercises 6.2.6 and 6.3.5 in [1]. O

Remarks:

1. If we assume further that the coordinates of X are independent, sub-Gaussian, and unit
variance, then we have

E(IBX|3) = |BIE,



and for any ¢t > 0,
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Note that the bound (3) also implies
E(||BX||2) = | Bl r| < CK?||B|l2,
which can be checked by integrating the tail probabilities.
2. When t 2 K||B||r, the upper tails of (2) and (3) exhibit a similar behavior.

3. The next example shows that the concentration inequality (3) might fail if we drop the
independence assumption.

Example: Let B = I,,, then ||B||% = n,||B||2 = 1. Let w be a random vector uniformly
distributed on S"~!, and let 2 be a random variable that satisfies P(z = 0) = P(z = 1) =
and independent of w. Consider the vector defined by X = v/2nzw. By symmetry and the
assumption that w € S"7!, we have E(w;) = 0 and 1 = E(>_I ; w?) = nE(w?). Therefore,
E(X;) = 0 and E(X?) = nE(w?) = 1. Note that by definition | X;| < v/2n|w;| a.s., hence

X [y, = KX, )y, = [ X llyy S Vw1 lly, S C,

where the step follows from Lecture 12. The coordinates of X are sub-Gaussian and unit
variance (but not independent). It is direct to check that the expectation of || X||2 satisfies
E(||X||2) = v/n/2, which is not centered around ||B||r = y/n. The concentration inequality
(3) does not hold.

3 An application: mean estimation of sub-Gaussian vectors

Theorem 2 (Mean estimation of sub-Gaussian vectors). Let XM X®) ... X ¢ RP be i.i.d. ran-
dom vectors with | X @ ||y, = K, E(X®) = p. Let X := 23" X be the empim'cal mean. Then
the event {|| X — pll2 < €} happens with probability 1 — zfn > (E)2(p+1og(3)).

Proof. Define Y = L(X®) — ) and Y =31, Y® = X — yi. Then E(Y) =0 and Y is a sum of
independent, mean-zero, sub-Gaussian vectors. For u € SP~!, we have

YD w)lly, = G = 1), )|,
S %H(X(i), W) ||y, (by Lemma 2.6.8 in [1])
< K
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Since (Y,u) is a sum of independent, mean zero, sub-Gaussian random variables, we have by
Proposition 2.6.1 in [1] that
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which implies that Y|y, < K/y/n. Note that a similar estimation was used when we proved
the Hoeffding’s inequality. Apply Theorem 1 (in particular the inequality (1)) to Y, B = I,, and
t = CK?log(3)/n, we get
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for large enough C. Therefore, the event {||X — ul[2 > €} happens with probability at most § if
nz (%)2(p +log($)). This completes the proof. O
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