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1 Overview

In the last lecture we introduced isotropic random vectors and sub-Gaussian random vectors. We
proved that if a vector has independent, mean-zero, sub-Gaussian entries then it is a sub-Gaussian
vector. We also showed that the uniform random vector on the n-dimensional sphere of radius

√
n

centered at the origin is sub-Gaussian. Note that the vectors in the second example have dependent
coordinates and are scaled according to the dimension.

In this lecture we discussed tail inequalities for the norm of sub-Gaussian vectors and applied the
inequality to estimate the mean of sub-Gaussian vectors.

2 Tail inequalities for the norm of sub-Gaussian vectors

Recall that the sub-Gaussian norm of a random vector X ∈ Rn is defined as

‖X‖ψ2 := sup
u∈Sn−1

‖〈X,u〉‖ψ2 ,

where Sn−1 = {u ∈ Rn : ‖u‖2 = 1}. We began with the following Hanson-Wright inequality.

Theorem 1 (Norm of sub-Gaussian vectors: anisotropic case). If X is a mean-zero, sub-Gaussian
random vector in Rn with ‖X‖ψ2 = K. Let B be an m× n matrix. Then for any t ≥ 0 we have

P
(
‖BX‖22 ≥ CK2‖B‖2F + t

)
≤ exp

(
− ct

K2‖B‖22

)
, (1)

P (‖BX‖2 ≥ CK‖B‖F + t) ≤ exp

(
− ct2

K2‖B‖22

)
, (2)

where ‖ · ‖F and ‖ · ‖2 denote the Frobenius norm, and operator norm respectively.

Proof. The proof is left as an exercise. See Exercises 6.2.6 and 6.3.5 in [1].

Remarks:

1. If we assume further that the coordinates of X are independent, sub-Gaussian, and unit
variance, then we have

E(‖BX‖22) = ‖B‖2F ,
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and for any t ≥ 0,

P (|‖BX‖2 − ‖B‖F | > t) ≤ exp

(
− ct2

K4‖B‖22

)
. (3)

Note that the bound (3) also implies

|E(‖BX‖2)− ‖B‖F | ≤ CK2‖B‖2,

which can be checked by integrating the tail probabilities.

2. When t & K‖B‖F , the upper tails of (2) and (3) exhibit a similar behavior.

3. The next example shows that the concentration inequality (3) might fail if we drop the
independence assumption.

Example: Let B = In, then ‖B‖2F = n, ‖B‖2 = 1. Let w be a random vector uniformly
distributed on Sn−1, and let z be a random variable that satisfies P(z = 0) = P(z = 1) = 1

2

and independent of w. Consider the vector defined by X =
√

2nzw. By symmetry and the
assumption that w ∈ Sn−1, we have E(wi) = 0 and 1 = E(

∑n
i=1w

2
i ) = nE(w2

1). Therefore,
E(Xi) = 0 and E(X2

i ) = nE(w2
i ) = 1. Note that by definition |X1| ≤

√
2n|w1| a.s., hence

‖X‖ψ2 = ‖〈X, e1〉‖ψ2 = ‖X1‖ψ2 . ‖
√
nw1‖ψ2 . C,

where the step follows from Lecture 12. The coordinates of X are sub-Gaussian and unit
variance (but not independent). It is direct to check that the expectation of ‖X‖2 satisfies
E(‖X‖2) =

√
n/2, which is not centered around ‖B‖F =

√
n. The concentration inequality

(3) does not hold.

3 An application: mean estimation of sub-Gaussian vectors

Theorem 2 (Mean estimation of sub-Gaussian vectors). Let X(1), X(2), · · · , X(n) ∈ Rp be i.i.d. ran-
dom vectors with ‖X(i)‖ψ2 = K, E(X(i)) = µ. Let X̄ := 1

n

∑n
i=1X

(i) be the empirical mean. Then
the event {‖X̄ − µ‖2 ≤ ε} happens with probability 1− δ if n & (Kε )2(p+ log(1δ )).

Proof. Define Y (i) = 1
n(X(i) − µ) and Y =

∑n
i=1 Y

(i) = X̄ − µ. Then E(Y ) = 0 and Y is a sum of
independent, mean-zero, sub-Gaussian vectors. For u ∈ Sp−1, we have

‖〈Y (i), u〉‖ψ2 = ‖〈 1n(X(i) − µ), u〉‖ψ2

. 1
n‖〈X

(i), u〉‖ψ2 (by Lemma 2.6.8 in [1])

. K
n .

Since 〈Y, u〉 is a sum of independent, mean zero, sub-Gaussian random variables, we have by
Proposition 2.6.1 in [1] that

‖〈Y, u〉‖2ψ2
.

n∑
i=1

‖〈Y (i), u〉‖2ψ2
.
K2

n
,
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which implies that ‖Y ‖ψ2 . K/
√
n. Note that a similar estimation was used when we proved

the Hoeffding’s inequality. Apply Theorem 1 (in particular the inequality (1)) to Y , B = Ip and
t = CK2 log(1δ )/n, we get

P
(
‖Y ‖22 ≥ C

K2

n

(
p+ log(

1

δ
)
))
≤ exp

(
−
cCK2

n log(1δ )
K2

n

)
. δ

for large enough C. Therefore, the event {‖X̄ − µ‖2 ≥ ε} happens with probability at most δ if
n & (Kε )2(p+ log(1δ )). This completes the proof.
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