MATH888: High-dimensional probability and statistics	Fall 2021
Lecture 14 — October 9, 2021	
Sebastien Roch, UW-Madison Scribe: P	Parvathi Kooloth

1 Overview

In the last lecture, we proved tail inequalities for the norm of sub-Gaussian vectors. We recall this result in a slightly different form:

Given $Z \in \mathbb{R}^p$, $\|Z\|_{\psi_2} \leq K$, $\mathbb{E}Z = 0$ and $\Sigma \in \mathbb{R}^{p \times p}$, $\|\Sigma\|_2 \geq 0$, we have $\forall t \geq 0$,

$$\mathbb{P}(Z^T \Sigma Z \ge C K^2 tr(\Sigma) + t) \le \exp\left(\frac{-ct}{K^2 \|\Sigma\|_2}\right)$$

In order to connect with the result from last lecture, note that $||B||_F^2 = tr(B^T B)$ and $||B||_2^2 = ||B^T B||_2$.

2 Mean estimation of sub-Gaussian vectors

Lemma 1. Let $Z^{(1)}, ... Z^{(n)}$ be independent, mean-zero, sub-Gaussian vectors, then

$$\|\Sigma_{i=1}^{n}\alpha_{i}Z^{(i)}\|_{\psi_{2}}^{2} \leq \Sigma_{i=1}^{n}\alpha_{i}^{2}\|Z^{(i)}\|_{\psi_{2}}^{2}$$

Proof. For any $\vec{u} \in \mathbb{S}^{p-1}$,

$$\|\langle \vec{u}, \Sigma_{i=1}^{n} \alpha_{i} Z^{(i)} \rangle\|_{\psi_{2}}^{2} = \|\Sigma_{i=1}^{n} \alpha_{i} \langle \vec{u}, Z^{(i)} \rangle\|^{2}$$
(1)

$$\leq \sum_{i=1}^{n} \alpha_{i}^{2} \| \langle \vec{u}, Z^{(i)} \rangle \|_{\psi_{2}}^{2}$$
(2)

We get the inequality in the second line using Prop. 2.6.1 from [1]. Now, taking supremum wrt \vec{u} , we have,

$$\sup_{\vec{u}\in\mathbb{S}^{p-1}} \|\langle \vec{u}, \Sigma_{i=1}^{n}\alpha_{i}Z^{(i)}\rangle\|_{\psi_{2}}^{2} = \leq \Sigma_{i=1}^{n}\alpha_{i}^{2}\sup_{\vec{u}\in\mathbb{S}^{p-1}} \|\langle \vec{u}, Z^{(i)}\rangle\|_{\psi_{2}}^{2}$$
(3)

Now, using $\sup_{\vec{u}\in\mathbb{S}^{p-1}} \|\langle \vec{u}, Z^{(i)} \rangle\|_{\psi_2} = \|Z^{(i)}\|_{\psi_2}$, we get the requisite result.

Theorem 2 (Mean estimation of sub-Gaussian vectors (taking into account covariance)). If $X^{(1)}, ...X^{(n)} \in \mathbb{R}^{\scriptscriptstyle \parallel}$ be iid random vectors with $\mathbb{E}(X^{((i))}) = \vec{\mu}, Cov(X^i) = \mathbb{E}((X^{(i)} - \vec{\mu})^T (X^{(i)} - \vec{\mu})) = \Sigma \geq 0$ and $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X^{(i)}$. Assume further that $\forall \vec{w} \in \mathbb{R}^p$,

$$\|\langle \vec{w}, X^{(i)} - \vec{\mu} \rangle\|_{\psi_2} \le K \sqrt{\mathbb{E}(\langle \vec{w}, X^{(i)} - \vec{\mu} \rangle)}$$

This last requirement is an anisotropic version of a sub-Gaussian norm of a random vector. Then with probability $p \leq 1 - \delta$,

$$\|\bar{X} - \bar{\mu}\|_2^2 \le \frac{K^2}{n} \|\Sigma\|_2 \left(\frac{tr\Sigma}{\|\Sigma\|_2} + \log(1/\delta)\right)$$

Note:

- 1. The term $\frac{tr\Sigma}{\|\Sigma\|_2}$ (stable rank) is an indicator of the rank/effective dimension of sub-Gaussian vector. When $\Sigma = I_p$, $\frac{tr\Sigma}{\|\Sigma\|_2} = p$; if some of the diagonal terms are zero, this would result in $\frac{tr\Sigma}{\|\Sigma\|_2} \leq p$.
- 2. Given $\Sigma = UDU^T$; $\Sigma^+ = UD^+U^T$ where

$$D_{ii}^{+} = \begin{cases} \frac{1}{D_{ii}}, & \text{if } D_{ii} < 0\\ 0, & \text{otherwise.} \end{cases}$$

And

$$\sqrt{\Sigma^+} = U\sqrt{D^+}U^T$$

where we get $\sqrt{D^+}$ by taking the square root of the diagonal terms in D.

Proof. Let $Z^{(i)} = \sqrt{\Sigma^+} (X^{(i)} - \vec{\mu})$, then $X^{(i)} = \sqrt{\Sigma^+} Z^{(i)} + \vec{\mu}$ with probability p = 1. So $\|\bar{X} - \vec{\mu}\|_2^2 = \bar{Z}^T \Sigma \bar{Z}$.

Now, it remains to bound $||Z^{(i)}||_{\psi_2}$

$$\|\langle \vec{w}, Z^{(i)} \rangle\|_{\psi_2} = \|\langle \vec{w}, \sqrt{\Sigma^+} (X^{(i)} - \vec{\mu}) \rangle\|_{\psi_2}$$
(4)

$$= \| \langle \sqrt{\Sigma^{+}} \vec{w}, (X^{(i)} - \vec{\mu}) \rangle \|_{\psi_{2}},$$
(5)

where $\vec{w} \in \mathbb{S}^{p-1}$. The second line is due to the symmetry of $\sqrt{\Sigma^+}$. From Lemma 1, we have

$$\|\langle \sqrt{\Sigma^{+}}\vec{w}, X^{(i)} - \vec{\mu} \rangle\|_{\psi_{2}} \leq K \sqrt{\mathbb{E}} \langle \sqrt{\Sigma^{+}}\vec{w}, X^{(i)} - \vec{\mu} \rangle$$

$$(6)$$

$$< K$$

$$(7)$$

$$\leq K$$
 (7)

The last line follows from: $\mathbb{E}(\langle X^{(i)} - \vec{\mu}, \vec{w} \rangle^2) = \langle \Sigma \vec{w}, \vec{w} \rangle$. Therefore, we have,

$$\|\bar{Z}\|_{\psi_2}^2 \le \frac{K^2}{n}$$

. The final result follows from the tail inequality for sub-Gaussian vectors.

References

[1] R. Vershynin, *High-Dimensional Probability: An introduction with Applications in Data Science*, Cambridge University Press, 2008.