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1 Overview

In the last lecture we discussed tail inequalities for the norm of sub-Gaussian vectors and obtained
an error bound for sub-Gaussian vector using the Hanson-Wright inequality.

In this lecture we will discuss mean estimation of i.i.d. sub-Gaussian random vectors and derive
an error bound.

2 Application to mean estimation

2.1 Review: Tail inequalities for quadratic forms of sub-Gaussian vectors

We begin by reviewing relevant concepts.

• For a symmetric matrix Σ, it has eigenvalue decomposition: Σ = UDUT .

• Σ � 0 denotes that Σ is a positive semi-definite matrix, which means Di,i ≥ 0 for all i.

• ‖B‖2F = tr(BTB)

• ‖B‖22 = ‖BTB‖2

• For sub-Gaussian random vector z ∈ Rp with ‖z‖ψ2 ≤ K, Ez = 0 and Σ ∈ Rp×p � 0, we
have ∀t ≥ 0:

P(zTΣz ≥ CK2 tr(Σ) + t) ≤ exp(− ct

K2‖Σ‖2
).

2.2 Mean estimation of sub-Gaussian random vectors

Lemma 1. Let z(1), · · · , z(n) ∈ Rp be independent, mean zero, sub-Gaussian vectors. Then we
have

‖
n∑
i=1

αiz
(i)‖2ψ2

.
n∑
i=1

αi‖z(i)‖2ψ2
.

Proof. The key idea is to project z on unit vectors.
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For any u ∈ Sp−1,

‖〈u,
n∑
i=1

αiz
(i)〉‖2ψ2

= ‖
k∑
i=1

αi〈u, z(i)〉‖2ψ2

.
n∑
i=1

α2
i ‖〈u, z(i)〉‖2ψ2

(by Prop 2.6.1 in [1]).

By taking the supremum on the equation above, we have,

sup
u∈Sp−1

‖〈u,
n∑
i=1

αiz
(i)〉‖2ψ2

= sup
u
‖

n∑
i=1

αi〈u, z(i)〉‖2ψ2

. sup
u

n∑
i=1

α2
i ‖〈u, z(i)〉‖

≤
∑

α2
i sup

u
‖〈u, z(i)〉‖2ψ2

.

The last inequality uses the fact that the sum of supremum is equal or larger than the superemum
of sum. Also note that the second line holds for universal constant.

Theorem 2. Let X(1), · · · ,X(n) ∈ Rp be i.i.d random vectors with E(X(i)) = µ and Cov(X(i)) =
E((X(i) − µ)(X(i) − µ)T ) = Σ � 0. Assume further that for all w ∈ Rp,

‖〈w,X(i) − µ〉‖ψ2 ≤ K
√
E(〈w,X(i) − µ〉2)

holds. Let X̄ = 1
n

∑n
i=1X

(i), the mean of X(1), · · ·X(n). Then, w.p ≥ 1− δ, we have

‖X̄ − µ‖22 �
K2

n
‖Σ‖2

{
tr Σ

‖Σ‖2
+ log

1

δ

}
.

Proof. Let z(i) =
√

Σ†(X(i) − µ)

Recall, the eigenvalue decomposition Σ = UDUT . The pseudo inverse of Σ, Σ† = UD†UT , where
D†ii is 1/Di,i for Di,i > 0 and 0 otherwise. Also,

√
Σ† = U

√
D†UT and

√
Σ = U

√
DU , where√

D† and
√
D takes a square root of diagonal entries of D and D†. respectively.

X(i) =
√

Σz(i) + µ with probability 1. Therefore, ‖X̄ − µ‖22 = z̄TΣz̄, where z̄ is the average of
z(i).

Now it remains to bound ‖z(i)‖ψ2 . For w ∈ Sp−1,

‖〈w, z(i)〉‖ψ2 = ‖〈w,
√

Σ†(X(i) − µ)〉‖ψ2

= ‖〈
√

Σ†w, (X(i) − µ)〉‖ψ2 (
√

Σ† : symmetric)

≤ K
√
E(〈
√

Σ†w,X(i) − µ〉2)
≤ · · ·
≤ K
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The rest of the proof uses Lemma to show ‖z̄‖2ψ2
. K2

n . Then plug into to P(zTΣz ≥ CK2 tr(Σ))+t

Remark:

• Notice the resemblance of Theorem 2. to the mean estimation of sub-Gaussian random vectors
discussed on the last lecture. The intuition is that similar to the fact that sub-Gaussian is
closely related to σ2, we now project X(i) − µ to w and observe the standard deviation.

• trΣ
‖Σ‖2 can be interpreted as a stable rank. The numerator tr Σ is the sum of eigenvalues of Σ

and the denominator ‖Σ‖2 is the largest eigenvalue. If the eigenvalues of Σ are the same,
the stable rank is equal to p whereas if many eigenvalues of Σ are close to zero, stable rank
is small.

Next time, we will be looking at application to linear regression.
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