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1 Overview

In the last lecture we derived bounds for mean estimation of sub-Gaussian vectors.

In this lecture we will focus on the linear regression problem with noisy observations. Our goal
would be to estimate the true parameter of the problem and derive error bounds of the loss. In
order to do so, we will leverage tools from the previous lecture.

2 Main Section

2.1 Linear regression

The problem has the following components:

• Let θ∗ ∈ Rp be an unknown vector.

• Let f(x) = xTθ∗, x ∈ Rp.

• We make n noisy observations (xi, yi) , yi = f(xi) + εi. We consider εi ∈ R, i = 1, . . . , n to
be a random variable with mean zero.

Our goal is to find θ̂ ∈ Rp that minimizes the MSE loss, i.e.,

MSE(f̂) =
1

n

n∑
i=1

(
f̂n(xi)− fn(xi)

)2
(1)

where f̂n(x) = xT θ̂. This problem cannot be solved directly, since we don’t have access to the
values f(xi).

2.1.1 Least square solution

Instead we will solve:
min
θ̂∈Rp

‖y − Xθ̂‖22 (*)

where y = (y1, . . . , yn)T ∈ Rn, X = (x1, . . . ,xn)T ∈ Rn×p.

Theorem 1. Let θ̂
LS

be a solution to (*). Then

XTXθ̂LS = XTy (**)

Furthermore, we can always choose θ̂
LS

= X+y.
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Recall. If A ∈ Rn×p with Singular Value Decomposition (SVD): A = USV T , where U ∈ Rn×n,
V ∈ Rp×p are orthogonal matrices and S ∈ Rn×p is a diagonal matrix with all of its elements
non-negative; then

A+ = V S+UT

where

s+ii =


1

sii
, if si > 0

0 , otherwise

We now proceed to the proof of theorem 1.

Proof. Notice that (*) is convex and its solution satisfies

∇θ‖y − Xθ‖22 = 0

By doing the calculations we can derive (**).
Considering now the second part of the theorem, if the solution of the problem is not unique, one
choice is to minimize also the norm of the parameter. Thus, we will solve:

min
θ
‖θ‖22 s.t. XTXθ = XTy

Using SVD we have:

XTX = V STUTUSV T = V S2V T

So, (**) becomes:
V S2V Tθ = V SUTy⇒ S2V Tθ = SUTy

Let z = V Tθ and w = UTy and (**) becomes:

s2iizi = siiwi for all i = 1, . . . , n

Notice that since V is orthogonal, ‖z‖22 = ‖θ‖22. So, we now want to minimize the norm of z or
equivalently the expression

z21 + . . . z2n subject to s2iizi = siiwi

In the case that sii = 0 we will choose zi = 0, since we want to minimize the above expression. In

any other case we will choose zi =
wi
sii

. We finally get that z = S+w or

θ = V S+UTy = X+y

Remark 2. Of course if X is invertible, θ = X−1y.

Remark 3. We can also think of the minimization of the norm of θ as the projection to the column
space of the matrix X.
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2.2 The MSE loss

We now want to focus on the MSE loss meaning
1

n
‖Xθ̂LS − Xθ∗‖22 and see whether we can bound

it.

Theorem 4. Suppose that ε = (ε1, . . . , εn) is sub-Gaussian with ‖ε‖ψ2 ≤ K. Then, with probability
at least 1− δ

MSE(Xθ̂LS) <
∼

K2

n
(rank(X) + log(1/δ))

Remark 5. If p << n then we get a small bound. However, if p >> n then rank(X) ' n and we
just get a big constant as a bound.

Proof. We have

Xθ̂LS − Xθ∗ = XX+y − Xθ∗

= XX+(Xθ∗ + ε)− Xθ∗

= XX+Xθ∗ + XX+ε− Xθ∗

= USV TV S+UTUSV Tθ∗ + XX+ε− Xθ∗

= USV Tθ∗ + XX+ε− Xθ∗

= Xθ∗ + XX+ε− Xθ∗

= XX+ε

So,
1

n
‖Xθ̂LS − Xθ∗‖22 =

1

n
‖XX+ε‖22

In the previous lecture we saw that if B is a matrix and ‖X‖ψ2 ≤ K, then for all t ≥ 0

P
(
‖BX‖22 ≥ CK2‖B‖2F + t

)
≤ exp(−ct/K2‖B‖22)

Using the above inequality with B =
XX+

√
n

and X = ε we get

P
(

1

n
‖XXT ε‖22 ≥

CK2

n
‖XX+‖2F + t

)
≤ exp

(
−ctn

K2‖XX+‖22

)

By choosing t =
K2‖XX+‖22

cn
log(1/δ) we get that with probability at least 1− δ

MSE(Xθ̂LS) ≤ CK2

n
rankX +

K2

cn

<
∼

K2

n
(rank(X) + log(1/δ))

Notice that ‖XX+‖22 is the maximum singular value of XX+ which is equal to one and ‖XX+‖2F is
equal to the rank of X.
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