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1 Overview

In the last lecture we started to apply our tail bounds for the norm of sub-gaussian vectors by using
the covariance of a random vector to bound how fast mean estimation of i.i.d sub-gaussians can
converge.

In this lecture we begin by reviewing the basics of linear regression, and then discuss some appli-
cations of these bounds in the context of regression.

2 Linear Regression

The setting for linear regression is as follows.

e Let ©F € RP be an unknown random vector that we are trying to recover.
e Let f(X)=XTO* for X € RP.

e Make n noisy observations (Xj;,y;) where y; = f(X;) + &; for ; a mean zero real valued
random variable for ¢ = 1,2,...,n.

Our goal is then to use these observations to recover ©*. For us, this will mean finding a © € R
that minimizes the mean squared error of f,(X) = X7 © where

MSE(f,) = = Y- (FalX) — F(X0)2 (1

There are other potential goals, such as restricting to sparse ) by looking at the 0 norm or the 1
norm, or even minimizing the expected MSE over a random input X that we won’t consider. There

is an exact characterization of this ©.

2.1 Least Squares Solution
Let X € R™P be the matrix with X; in each row, and Y = [y1,¥2,...,¥s]. Then minimizing
equation (1) is equivalent to finding

min |Y — XO|f3. (2)
IS

The following theorem characterizes the solutions to this equation.



Theorem 1. Let OX5 be a solution to (2). Then it must satisfy the normal equations, namely
xTxels = xTy. (3)

We can also choose a unique O = XY that minimizes |©%5||,.

Recall the pseudoinverse of a matrix A € R™P with singular value decomposition A = USVT is
1/8”' if Sii >0

fori=1,...,n.
0 else

At = VT STU where S' is the diagonal matrix made up of s;; = {

Here U € R™™™ and V € RP*P are orthogonal matrices.

Proof. Because of the convexity of || - ||3, (2) is just minimizing a convex function composed with a
linear one and therefore a convex problem itself. Thus the minimum satisfies Vg||Y — X0||2 = 0.
Simple calculations show

VollY —X0|2 = Vo (Y]} - 2x707Y + 07XTX0) = 2x"x6 — 2X"Y
and thus Vgrs||Y — XOLS|3 =0 «—= XTXOS = XTY, which is exactly the normal equations
(3)-
If the solution to this is not unique, we want to find min ||©||? subject to (3). To do so we can use
the SVD of X = USVT to see
x"xe =x"y

= VSUTUusvTe =vsu'y

= VTvsvTie = suTy

= $°VTe = sU"Y.
Substituting Z = VIO, W = ULY we can see (3) is equivalent to S?Z = SW with ||Z||3 = ||©]/3

because V is orthogonal. For any ¢ = 1,...,n, if s;; is 0, we have no constraint on the corresponding
z; which means we would choose z; = 0 to minimize ||©]]3. Otherwise we need z; = %wi, which is
kX3

exactly the formula for ST. Thus
Z=SW = 0=vsiu'y =x'y.

3 Assessing Least Squares on Sub-Gaussian Errors

We can now start applying the bounds from previous lectures to analyze how accurate the MSE of
© will be. Recall for our setting equation (1) is equivalent to

~ 1 ~
MSEXOM) = E||X@LS — XO*|3. (4)

Theorem 2. Suppose € = [¢1,€2,...,&,)" is sub-gaussian with |||y, < K. Then

MSE(X6L%) <

2
% (rank(X) + log(1/5)) w.p. 1 -5



Note that in the high dimensional case when p > n, rank(X) &~ n, so this bound is not very
meaningful; all it says is the error is bounded by a large constant that does not converge to 0.

Proof. Plugging the result of Theorem (1) into equation (4),

X6 —xe* = xxty — xo*
= XX'(X0* 4 ¢) — XO*
= (USvVTvsuTusvT —X)0* + XXTe
= (USVT - X)0* 4+ XX'e
= XX'e.

In other words, minimizing (4) is equivalent to minimizing ||XX'e||3, which is exactly the form we
saw in the previous two lectures. There we showed

1 CK? ¢ ct
P( =|xxfel? > ——|xxF)|2 + = ) < _—
(G mextets > S+ ) < e (~ e

which is equal to § when ¢t = 1K?|XXT||3log(1/5). Recall that |[XXT||2 is just the sum of the
squared singular values, which for XX = USSTUT just counts each nonzero element of S which is

exactly the rank of X. Meanwhile ||XXT||2 = 1 is just the maximum singular value. Plugging in we
have that

k(X
rank(X) + -

. 2 LE2100(1/6
g <,1LHX@“ _xerz > 9K g</>> =

2

— P (MSE(X@LS) < K7 (rank(X) 4 log(1 /5))) >1—0.



