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1 Overview

In the last lecture we started to apply our tail bounds for the norm of sub-gaussian vectors by using
the covariance of a random vector to bound how fast mean estimation of i.i.d sub-gaussians can
converge.

In this lecture we begin by reviewing the basics of linear regression, and then discuss some appli-
cations of these bounds in the context of regression.

2 Linear Regression

The setting for linear regression is as follows.

� Let Θ∗ ∈ Rp be an unknown random vector that we are trying to recover.

� Let f(X) = XTΘ∗ for X ∈ Rp.

� Make n noisy observations (Xi, yi) where yi = f(Xi) + εi for εi a mean zero real valued
random variable for i = 1, 2, . . . , n.

Our goal is then to use these observations to recover Θ∗. For us, this will mean finding a Θ̂ ∈ Rp
that minimizes the mean squared error of f̂n(X) = XT Θ̂ where

MSE(f̂n) =
1

n

n∑
i=1

(f̂n(Xi)− f(Xi))
2. (1)

There are other potential goals, such as restricting to sparse Θ̂ by looking at the 0 norm or the 1
norm, or even minimizing the expected MSE over a random input X that we won’t consider. There
is an exact characterization of this Θ̂.

2.1 Least Squares Solution

Let X ∈ Rn×p be the matrix with Xi in each row, and Y = [y1, y2, . . . , yn]. Then minimizing
equation (1) is equivalent to finding

min
Θ̂∈R
‖Y − XΘ̂‖22. (2)

The following theorem characterizes the solutions to this equation.
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Theorem 1. Let Θ̂LS be a solution to (2). Then it must satisfy the normal equations, namely

XTXΘ̂LS = XTY. (3)

We can also choose a unique Θ̂LS = X†Y that minimizes ‖Θ̂LS‖2.

Recall the pseudoinverse of a matrix A ∈ Rn×p with singular value decomposition A = USV T is

A† = V TS†U where S† is the diagonal matrix made up of sii =

{
1/sii if sii > 0

0 else
for i = 1, . . . , n.

Here U ∈ Rn×n and V ∈ Rp×p are orthogonal matrices.

Proof. Because of the convexity of ‖ · ‖22, (2) is just minimizing a convex function composed with a
linear one and therefore a convex problem itself. Thus the minimum satisfies ∇Θ‖Y − XΘ‖22 = 0.
Simple calculations show

∇Θ‖Y − XΘ‖22 = ∇Θ(‖Y ‖22 − 2XTΘTY + ΘTXTXΘ) = 2XTXΘ− 2XTY

and thus ∇Θ̂LS‖Y − XΘ̂LS‖22 = 0 ⇐⇒ XTXΘ̂LS = XTY , which is exactly the normal equations
(3).

If the solution to this is not unique, we want to find min ‖Θ‖2 subject to (3). To do so we can use
the SVD of X = USV T to see

XTXΘ = XTY
⇐⇒ V SUTUSV TΘ = V SUTY

⇐⇒ V TV S2V TΘ = SUTY

⇐⇒ S2V TΘ = SUTY.

Substituting Z = V TΘ,W = UTY we can see (3) is equivalent to S2Z = SW with ‖Z‖22 = ‖Θ‖22
because V is orthogonal. For any i = 1, . . . , n, if sii is 0, we have no constraint on the corresponding
zi which means we would choose zi = 0 to minimize ‖Θ‖22. Otherwise we need zi = 1

sii
wi, which is

exactly the formula for S†. Thus

Z = S†W =⇒ Θ = V S†UTY = X†Y.

3 Assessing Least Squares on Sub-Gaussian Errors

We can now start applying the bounds from previous lectures to analyze how accurate the MSE of
Θ̂ will be. Recall for our setting equation (1) is equivalent to

MSE(XΘ̂LS) =
1

n
‖XΘ̂LS − XΘ∗‖22. (4)

Theorem 2. Suppose ε = [ε1, ε2, . . . , εn]T is sub-gaussian with ‖ε‖ψ2 ≤ K. Then

MSE(XΘ̂LS) .
K2

n
(rank(X) + log(1/δ)) w.p. 1− δ
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Note that in the high dimensional case when p � n, rank(X) ≈ n, so this bound is not very
meaningful; all it says is the error is bounded by a large constant that does not converge to 0.

Proof. Plugging the result of Theorem (1) into equation (4),

XΘ̂LS − XΘ∗ = XX†Y − XΘ∗

= XX†(XΘ∗ + ε)− XΘ∗

= (USV TV S†UTUSV T − X)Θ∗ + XX†ε
= (USV T − X)Θ∗ + XX†ε
= XX†ε.

In other words, minimizing (4) is equivalent to minimizing ‖XX†ε‖22, which is exactly the form we
saw in the previous two lectures. There we showed

P
(

1

n
‖XX†ε‖22 ≥

CK2

n
‖XX†‖2F +

t

n

)
≤ exp

(
− ct

K2‖XX†‖22

)
which is equal to δ when t = 1

cK
2‖XX†‖22 log(1/δ). Recall that ‖XX†‖2F is just the sum of the

squared singular values, which for XX† = USS†UT just counts each nonzero element of S which is
exactly the rank of X. Meanwhile ‖XX†‖22 = 1 is just the maximum singular value. Plugging in we
have that

P

(
1

n
‖XΘ̂LS − XΘ∗‖22 ≥

CK2

n
rank(X) +

1
cK

2 log(1/δ)

n

)
≤ δ

=⇒ P
(
MSE(XΘ̂LS) <

CK2

n
(rank(X) + log(1/δ))

)
> 1− δ.
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