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1 Overview

In the last lecture we studied the linear regression model with sub-Gaussian noise and proved the
upper bound of the mean squared error (MSE) of the predicted values with least squared estimate.

In this lecture we derive the upper bound for the least squared estimate itself and relax the linear
assumption on the predictor X by considering ϕ(X) with non-linear functions ϕ.

2 Review of Matrix Perturbation theory

We review the matrix perturbation theory before going to the linear regression.

Definition 1 (Induced Norm). The 2-norm of a matrix A ∈ Rn×m is

‖A‖2 = max
0 6=x∈Rm

‖Ax‖
‖x‖

= max
x∈Sm−1

‖Ax‖ .

Theorem 1 (Spectral Theorem). Let A ∈ Rd×d be a symmetric matrix, that is, AT = A. Then A
has d orthonormal eigenvectors q1, ...,qd with corresponding (not necessarily distinct) real eigen-
values λ1 ≥ λ2 ≥ · · · ≥ λd. In matrix form, this is written as the matrix factorization

A = QΛQT =
d∑
i=1

λiqiq
T
i ,

where Q has columns q1, ...,qd and Λ = diag(λ1, ..., λd). We refer to this factorization as a spectral
decomposition of A.

Definition 2 (Rayleigh Quotient). Let A ∈ Rd×d be a symmetric matrix. The Rayleigh quotient
is defined as

RA(u) =
〈u,Au〉
〈u,u〉

,

which is defined for any 0 6= u ∈ Rd.

Theorem 2 (Courant-Fischer). Let A ∈ Rd×d be a symmetric matrix with spectral decomposition
A =

∑d
i=1 λiviv

T
i where λ1 ≥ · · · ≥ λd. For each k = 1, ..., d, define the subspace

Vk = span(v1, ...,vk) and Wd−k+1 = span(vk, ...,vd).

Then, for all k = 1, ..., d,
λk = min

u∈Vk
RA(u) = max

u∈Wd−k+1

RA(u).
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Furthermore we have the following min-max formulas, which do not depend on the choice of spectral
decomposition, for all k = 1, ..., d,

λk = max
dim(V)=k

min
u∈V
RA(u) = min

dim(W)=d−k+1
max
u∈W

RA(u).

Lemma 3 (Weyl). Let A ∈ Rd×d and B ∈ Rd×d be symmetric matrices. Then, for all j = 1, ..., d

max
j∈[d]
|λj(B)− λj(A)| ≤ ‖B−A‖2 ,

where ‖X‖2 is the induced 2-norm of X.

Theorem 4 (Davis-Kahan). Let A ∈ Rd×d and B ∈ Rd×d be symmetric matrices. For an i ∈ [d],
assume that

δ := min
j 6=i
|λi(A)− λj(A)| > 0.

Then,

min
s∈{+1,−1}

‖vi(A)− svi(B)‖2 ≤
8 ‖A−B‖22

δ2
.

See the slide on the course website for more details.

3 Error bound for the least square estimator

Consider n observations {(xi, yi)}ni=1 where xi ∈ Rp and

yi = xTi θ
∗ + εi,

where θ∗ ∈ Rp is the unknown coefficient and ε = (ε1, . . . , εn) ∈ Rn is a mean-zero random vector.
Rewrite the linear regression model in the matrix form

y = Xθ∗ + ε,

where y = (y1, . . . , yn) ∈ Rn and X ∈ Rn×p is a matrix with xTi on the row i. The least squared
estimator of θ∗ is

θ̂
LS ∈ arg min

θ̂∈Rp

1

n

∥∥∥y −Xθ̂
∥∥∥2
2
.

We can choose θ̂
LS

= X+y, where X+ is the persudo inverse of X. Note that θ̂
LS

is the minimal
norm solution and is not necessarily unique.

First, we recall the upper bound for the predicted values with least squared estimate.

Theorem 5 (Upper bound of MSE for predicted values). Suppose ε is a sub-Gaussian vector with
‖ε‖ψ2

≤ K. Then, with probability 1− δ, we have

MSE(Xθ̂
LS

) =
1

n

∥∥∥Xθ̂
LS −Xθ∗

∥∥∥2
2
.
K2

n

(
rank(X) + log

1

δ

)
.
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Next, we derive a corollary of Theorem 5 to find the upper bound for θ̂
LS

itself rather than the
predicted values.

Corollary 6 (Upper bound of MSE for least squared estimate). Suppose ε is a sub-Gaussian vector

with ‖ε‖ψ2
≤ K. Assume p ≤ n and B = XTX

n has rank p. Then, with probability 1− δ, we have∥∥∥θ̂LS − θ∗
∥∥∥2
2
.

1

λmin(B)

K2

n

(
p+ log

1

δ

)
,

where λmin(B) is the smallest eigenvalue of B.

Proof of Corollary 6. By Courant-Fischer characterization, we have

λmin(B) = min
06=u∈Rp

〈u,Bu〉
〈u,u〉

.

Note that

1

n

∥∥∥Xθ̂
LS −Xθ∗

∥∥∥2
2

=
(
θ̂
LS − θ∗

)T XTX

n

(
θ̂
LS − θ∗

)
=
(
θ̂
LS − θ∗

)T
B
(
θ̂
LS − θ∗

)
,

where the second equation follows by the definition of B. Therefore, we have∥∥∥θ̂LS − θ∗
∥∥∥2
2
≤ 1

λmin(B)
MSE(Xθ̂

LS
),

which completes the proof by Theorem 5.

4 Non-linear regression and oracle bounds

The linear assumption on X is to restrictive for practical application. We model the non-linearity
in this section.

Consider the dictionary H = {ϕ1, . . . , ϕM} where ϕi : Rp 7→ R for all i ∈ [M ]. Assume the response
y(x) ∼

∑M
i=1 θiϕi(x). Given n observations {(xi, yi)}ni=1, we can obtain the least squared estimator

via

θ̂
LS ∈ arg min

θ̂∈RM

∥∥∥y − Φθ̂
∥∥∥2
2
,

where the i-th row of Φ is ΦT
i = (ϕ1(xi), . . . , ϕM (xi)).

Example 1 (Polynomial regression). Consider the polynomial regression with ϕ1(x) = 1, ϕ2(x) =
x, ϕ3(x) = x2. Then, with observations {xi, yi}ni=1we have least squared estimator

θ̂
LS ∈ arg min

θ̂∈R3

1

n

n∑
i=1

[
yi −

(
θ1 + θ2xi + θ3x

2
i

)]2
.

Assume the data is generated from the class of function you assumed. We describe such assumption
using the word “oracle”. Next, we establish the oracle bounds for the predicted values of non-linear
regression.

3



Theorem 7 (Upper bound of MSE for predicted values in non-linear regression). Suppose the data
is of form yi = f(xi) + εi for i ∈ [n] with ‖ε‖ψ2

= K. Fix the dictionary H. Then, with probability
1− δ, we havev

MSE(Φθ̂
LS

) ≤ inf
θ̂

MSE(Φθ̂) +
CK2

n

(
M + log

1

δ

)
,

where MSE(Φθ̂) = 1
n

∥∥∥Φθ̂ − f
∥∥∥2
2

and f = (f(x1), . . . , f(xn)). Note that the inf chooses the best θ in

the class. If the data is indeed generated from this class (realizable), then the term inf θ̂ MSE(Φθ̂)
degenerates to 0.
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