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1 Overview

In the last lecture we studied the linear regression model with sub-Gaussian noise and proved the
upper bound of the mean squared error (MSE) of the predicted values with least squared estimate.

In this lecture we derive the upper bound for the least squared estimate itself and relax the linear
assumption on the predictor X by considering ¢(X) with non-linear functions ¢.

2 Review of Matrix Perturbation theory

We review the matrix perturbation theory before going to the linear regression.

Definition 1 (Induced Norm). The 2-norm of a matriz A € R"*™ is

A
|A], = max IAX] s (A
0£xeR™ [|X||  xesm-1

Theorem 1 (Spectral Theorem). Let A € R¥*? be a symmetric matriz, that is, AT = A. Then A
has d orthonormal eigenvectors q, ...,qq with corresponding (not necessarily distinct) real eigen-
values \1 > Ao > -+ > Ag. In matriz form, this is written as the matriz factorization

d
A =QAQ" =) Naiq],
i=1

where Q has columns qi, ...,qq and A = diag(A1, ..., \q). We refer to this factorization as a spectral
decomposition of A.

Definition 2 (Rayleigh Quotient). Let A € R4 be a symmetric matriz. The Rayleigh quotient
1s defined as
(u, Au)

Ra(u) = )

which is defined for any 0 #u € R,

Theorem 2 (Courant-Fischer). Let A € R™? be a symmetric matriz with spectral decomposition
A= Zle \vivl where \y > -+ > N\y. For each k =1,...,d, define the subspace

Vi = span(vi, ..., Vi) and Wy_g11 = span(Vi, ..., vq).
Then, for all k =1,...,d,

A = min Ra(u) = max Ra(u).
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Furthermore we have the following min-max formulas, which do not depend on the choice of spectral
decomposition, for all k =1, ...,d,

A= max minRa(u) = min max Ra(u).
dim(V)=k uey dim(W)=d—k+1 ueW

Lemma 3 (Weyl). Let A € R™? and B € R¥™? be symmetric matrices. Then, for all j =1,....d

max [A;(B) — A;(A)[ < [[B - A,
J€ld]

where || X||, is the induced 2-norm of X.

Theorem 4 (Davis-Kahan). Let A € R™4 and B € R¥*? be symmetric matrices. For an i € [d),
assume that

§ = min [A(A) = X,(4)] > 0.
JF

Then,

: 8| A — Blly
i(A) —sv;(B 2 < 2
i ) - v < A

See the slide on the course website for more details.

3 Error bound for the least square estimator

Consider n observations {(x;,y;)}!_; where x; € RP and
Yi = X7,T0* + €,

where 08" € RP is the unknown coefficient and € = (€1, ..., €,) € R" is a mean-zero random vector.
Rewrite the linear regression model in the matrix form

y = X0" + €,
where y = (y1,...,yn) € R” and X € R™*P is a matrix with XZT on the row i. The least squared
estimator of 8% is
~LS ! ~ 112
0 € argmin— Hy — XB‘ .
perr T 2
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We can choose 8~ = X1y, where X is the persudo inverse of X. Note that 8 ~ is the minimal
norm solution and is not necessarily unique.

First, we recall the upper bound for the predicted values with least squared estimate.

Theorem 5 (Upper bound of MSE for predicted values). Suppose € is a sub-Gaussian vector with
|€lly, < K. Then, with probability 1 — 4, we have
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Next, we derive a corollary of Theorem 5 to find the upper bound for 8  itself rather than the
predicted values.

Corollary 6 (Upper bound of MSE for least squared estimate). Suppose € is a sub-Gaussian vector
with ||e||,, < K. Assumep <n and B = XTTX has rank p. Then, with probability 1 — 0, we have
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where Amin(B) is the smallest eigenvalue of B.

Proof of Corollary 6. By Courant-Fischer characterization, we have

Amin(B) = min <u,Bu>‘
0#uckr (u,u)

Note that

(0 o) XX (9 ) — (6" - 07) B (6" ~6").

1 HX@LS — X0
n 2 n

where the second equation follows by the definition of B. Therefore, we have

~LS 2 1 ~LS
0 -0 <———MSE(X0
2 )\min(B) ( )7
which completes the proof by Theorem 5. ]

4 Non-linear regression and oracle bounds

The linear assumption on X is to restrictive for practical application. We model the non-linearity
in this section.

Consider the dictionary H = {¢1,...,pum} where p; : RP — R for all i € [M]. Assume the response
y(x) ~ sz\il ipi(x). Given n observations {(x;,y;)}~,, we can obtain the least squared estimator
via
~LS ) «
0 € argmin Hy — o0
OcRM
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where the i-th row of ® is ®] = (¢1(x:), ..., pn (X))

Example 1 (Polynomial regression). Consider the polynomial regression with ¢1(x) = 1, pa(x) =

z,p3(z) = 2. Then, with observations {zi,yi} ' we have least squared estimator

@LS € arg min 1 Z [yi - (91 + oz + 931’?)]2-

bers "4

Assume the data is generated from the class of function you assumed. We describe such assumption
using the word “oracle”. Next, we establish the oracle bounds for the predicted values of non-linear
regression.



Theorem 7 (Upper bound of MSE for predicted values in non-linear regression). Suppose the data
is of form y; = f(x;) + € fori € [n] with ||e||w2 = K. Fiz the dictionary H. Then, with probability
1 -9, we havev
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MSE@®0™) < inf MSE@) + E& <M +log ;) ,
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where MSE(®6) = 1 H<I>9 - sz and £ = (f(x1),..., f(xn)). Note that the inf chooses the best 6 in

the class. If the data is indeed generated from this class (realizable), then the term inf, MSE(®8)
degenerates to 0.



