
MATH888: High-dimensional probability and statistics Fall 2021

Lecture 16 — October 13, 2021

Sebastien Roch, UW-Madison Scribe: Yuchen Zeng, Sebastien Roch

1 Overview

In the last lecture we (a) studied least square estimator of linear regression model, and (b) proved
the upper bound of mean squared error of estimated predicted variables.

In this lecture we (a) derive the concentration bound of the least square estimator of linear regression
model, and (b) investigate a more general case: non-linear models.

2 Reveiw of eigenvalues

We begin by reviewing a few basic factors about matrices.

Definition 1 (Induced Norm). The 2-norm of a matrix A ∈ Rn×m is

‖A‖2 = max
0 6=x∈Rm

‖Ax‖
x

= max
x∈Sm−1

‖Ax‖ .

Theorem 2 (Spectral Theorem). Let A ∈ Rd×d be a symmetric matrix, that is, A> = A. Then A
has d orthonormal eigenvectors q1, . . . , qd with corresponding (not necessarily distinct) real eigen-
values λ1 ≥ λ2 ≥ · · · ≥ λd. In matrix form, this is written as the matrix factorization

A = QΛQ> =
d∑
i=1

λiqiq
>
i ,

where Q has columns q1, . . . , qd and Λ = diag(λ1, . . . , λd). We refer to this factorization as a
spectral decomposition of A.

Definition 3 (Rayleigh Quotient). Let A ∈ Rd×d be a symmetric matrix. The Rayleigh quotient
is defined as

RA(u) =
〈u,Au〉
〈u,u〉

,

which is defined for any u 6= 0 in Rd.

Theorem 4 (Courant-Fischer). Let A ∈ Rd×d be a symmetric matrix with spectral decomposition
A =

∑d
i=1 λiviv

>
i where λ1 ≥ · · · ≥ λd. For each k = 1, . . . , d, define the subspace

Vk(C) = span(v1(C), . . . ,vk(C)) and Wd−k+1(C) = span(vk(C), . . . ,vd(C)).

Then, for all k = 1, . . . , d,

λk = min
u∈Vk

RA(u) = max
u∈Wd−k+1

RA(u).
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Furthermore we have the following min-max formulas, which do not depend on the choice of spectral
decomposition, for all k = 1, . . . , d,

λk = max
dim(V)=k

min
u∈V
RA(u) = min

dim(W)=d−k+1
max
u∈W

RA(u).

Lemma 5 (Weyl’s Inequality). Let A ∈ Rd×d and B ∈ Rd×d be symmetric matrices. Then, for all
j = 1, . . . , d,

max
j∈[d]
|λj(B)− λj(A)| ≤ ‖B −A‖2 ,

where ‖C‖2 is the induced 2-norm of C.

Theorem 6 (Davis-Kahan). Let A ∈ Rd×d and B ∈ Rd×d be symmetric matrices. For an i ∈
{1, . . . , d}, assume that

δ := min
j 6=i
|λi(A)− λj(A)| > 0,

then

min
s∈{+1,−1}

‖vi(A)− svi(B)‖2 ≤
8 ‖A−B‖22

δ2
.

3 Controlling the coefficients

Assume we have n observation pairs {(xi, yi)}ni=1, where xi ∈ Rp, yi = x>i θ
? + εi, θ

? ∈ Rp is
unknown, and ε = (ε1, . . . , εn) ∈ Rn is of mean zero. Denote the y = (y1, . . . , yn), X as the matrix
with x>i on row i. Therefore, the linear regression model can be written as

y = Xθ? + ε.

The least square estimator of θ? is defined as θ̂LS ∈ arg minθ∈Rp
1
n ‖y −Xθ‖22. Then θ̂LS = Xy is

the minimum norm solution in the set of least square estimators, which is generally unique.

In last lecture, we proved the following theorem, which provides a upper bound for the mean square
error of the estimations.

Theorem 7. Suppose ε is subgaussian, i.e, ‖ε‖ψ2
≤ K. Then w.p.1− δ, we have

MSE(Xθ̂LS) .
K2

n
(rank(X) + log(

1

δ
)),

where MSE(Xθ̂LS) = 1
n

∥∥∥Xθ̂LS −Xθ?
∥∥∥2
2
.

We derive a corollary which provides an concentration bound for θ̂LS, based on the theorem above.

Corollary 8. Suppose p ≤ n and B = X>X
n has rank p. Then w.p.1− δ,∥∥∥θ̂LS − θ∥∥∥2

2
.

1

λmin(B)

K2

n
(p+ log(

1

δ
)).
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Proof. By Courant-Fischer characterization, we have

λmin(B) = min
u∈Rp

〈u,Bu〉
〈u,u〉

. (1)

Note that

1

n

∥∥∥Xθ̂LS −Xθ?
∥∥∥2
2

= (θ̂LS − θ?)>X>X

n
(θ̂LS − θ?) = (θ̂LS − θ?)>B(θ̂LS − θ?). (2)

Combining (1) and (2) yields ∥∥∥θ̂LS − θ?∥∥∥2
2
≤ 1

λmin(B)
MSE(Xθ̂LS).

Plugging the upper bound of MSE(Xθ̂LS) in Theorem 7 completes the proof.

4 Modeling non-linearities and an oracle bound

In this section, we extend the results to some nonlinear models. Consider a dictionary H =
{φ1, . . . , φM}, where φi : Rp → R is a map, for i = 1, . . . ,M . Then we can consider functions of
x which can be written as

∑M
i=1 θiφ(x). Given n observation pairs {(xi, yi)}Mi=1, we minimize the

mean square error and obtain the least square estimator

θ̂LS = arg min
θ∈RM

‖y − Φθ‖22 ,

where the ith row of Φ is Φ>i = (φ1(xi), . . . , φM (xi)).

Next, we provide a quick example to motivate the analysis on nonlinear model.

Example 1. Suppose we observe a quadratic pattern between x and y. We select the features to be
φ1(x) = 1, φ2(x) = x, φ3(x) = x2. Then we have θ̂LS ∈ arg minθ

1
n

∑n
i=1

(
yi − (θ1 + θ2xi + θ3x

2
i )
)2

.

Lastly, we present a theorem, which provides an upper bound for mean square error of the estimation
under non-linear models’ cases—without assuming that the data is generated by the class of models
used to fit it. This type of bound is called an oracle bound, and we will have more to say about
them later in the course.

Theorem 9 (See Theorem 3.3 in [1]). Assume the data yi = f(xi) + εi with ‖ε‖ψ2
≤ K, for all

i = 1, . . . , n. Fix the dictionary H. Then w.p. 1− δ,

MSE(Φθ̂LS) ≤ inf
θ∈Rp

MSE(Φθ) +
cK2

n
(M + log(

1

δ
)),

where MSE(Φθ) = 1
n ‖Φθ − f‖

2
2, and f = (f(x1), . . . , f(xn)).

Proof. A solution to infθ∈Rp MSE(Φθ) is given by θ̄ = Φ+f , which corresponds to projecting f
onto the column space of Φ. By the properties of the orthogonal projection, for any other vector
Φθ in the span of the columns of Φ, we have the orthogonality

〈Φθ − Φθ̄,f − Φθ̄〉 = 0.
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That applies in particular to the choice θ = θ̂LS. Hence, by Pythagoras,

1

n

∥∥∥Φθ̂LS − f
∥∥∥2
2

=
1

n

∥∥∥Φθ̂LS − Φθ̄ + Φθ̄ − f
∥∥∥2
2

=
1

n

∥∥Φθ̄ − f
∥∥2
2

+
1

n

∥∥∥Φθ̂LS − Φθ̄
∥∥∥2
2
.

The claim then follows from the definition of θ̄ and our previous bound on the MSE of linear
regression.
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