MATHS888: High-dimensional probability and statistics Fall 2021

Lecture 17 — October 15, 2021
Sebastien Roch, UW-Madison Scribe: Jemny Wei, Sebastien Roch

1 Overview

In the last lecture we have (a) derived the concentration bound of the least square estimator of
linear regression model, and (b) investigated a more general case: non-linear models.

In this lecture we will explore the behavior of the suprema of a random processes defined on some
index set T'. To see why this is useful in solving high dimensional problems, we can see the following
example. When studying the behavior of the 2-norm of some random matrix A € R™*™ we can
view the 2-norm as the suprema of the following random processes:

X = ||Az|, x € sm—1
That is:

|Al, = max X, = max |Aal.

Remark 1. This lecture aligns closely with section 5.1 and 5.2 in [2].

2 Suprema of Random Process with Finite Index Set

2.1 Extreme Value Theory with i.i.d Random variables
We begin with finding the maximum of a random process (X;),.; whose index set 7" is finite.

When Xj,..., X, are ii.d random variables with cumulative distribution function (CDF) F(z) =
P(X; < z) for z € R, the problem becomes simple because we can compute the CDF of the finite
maxima M, = maxj<i<, X; directly:

P (M, < x) = (F(x))"

In particular, for specific examples with polynomial and exponential tails, the following hold as
n — 0.

Theorem 2 (See e.g. Exercise 3.2.2in [1]). 1. If F(x)=1—2"%, forz >1 and o > 0, then

M, _x
P<n1/a §y) —>exp(—y )

2. If F(x) =1—e"" for x >0, then

P (M, —logn <y) — exp (—e_y) .



2.2 Extreme Value Theory with Finite Step Sub-Gaussian Random Process

Let (X¢),cq be a random process where T is an arbitrary index set, and (X;),.; need not to be
ii.d random variables.

Example 1. Let A be a random matriz in RP*P and T = SP™1, the p-dimensional unit ball. In this
case, we can consider | A2 as the suprema of a random processes X, = ||Aul|y for all u € SP~1L.

2.2.1 Naive Bound

Asuming we have a finite index set 7. How can one bound the maximum of a finite set of random
variables? The most naive approach is to bound the supremum by a sum:

sup X; < Z | X¢|
teT pyur

Using this inequality, we could get the following bound:

E <supXt> <E <sup |Xt|)
teT teT

< (Zw)

teT
<) E|X|

< |T|supE | X¢|
teT

This indicates that if we could control the magnitude of every individual random variable Xy, we
can get a bound that grows linearly in the cardinality |T'|. Extending this bound a little bit, by the
Jensen’s Inequality, we get that for p > 1,

1/p
E (sup Xt> <E (sup \Xt\p>

teT teT
< |T|MP sup (E | X,[P)"/?
teT

Thus if the random variables X; have bounded p-th moment, the dependence on |T'| for this naive
bound can be improved to |T|'/?.

2.2.2 Maximal Inequality for Sub-Gaussian Processes

In the naive bound, we did not make any assumptions for each random variable X;. In this class,
we are mostly interested in sub-Gaussian random variables. So, for sub-Gaussian random process
(Xt)er» the following theorem provides us a way to bound its suprema. One could look for a
general version of this following theorem in Lemma 5.1 of [2].



Theorem 3 (Maximal Inequality). Let T be a finite index set. (X;),op is a random process where
foranyt € T, X; has zero mean and HXtHi2 < o2 Then,

E <SupXt> < V2Co?log |T|

teT

Proof. By Jensen’s Inequality, for any A > 0, we have

1
E <SUP Xt> < —logE (e’\S“PtET Xt)
teT A

< % log Z E (eAX’f)

teT
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Now optimize over A, we get the desired bound. O

IN

Exercise 4 (Maximal Tail Inequality, Lemma 5.2 of [2]). Show that
P (sup X > +/2Cc2log|T| + x> < /207 for all x > 0.
teT

Hint. Use Markov’s inequality and proceed as above.

3 Towards understanding Suprema of Random Process with Infi-
nite Index Set

Before we consider random processes defined on an infinite index set, we need to introduce a couple
of tools first.

Definition 5 (e-net, Definition 5.5 in [2]). Let (T, d) be a metric space, € >0 and a set K CT. A
subset N C K is an e-net of K if for Ve € K, Jxg € N such that d (z,x0) < €. Equivalently, N is
an e-net of K if and only if K can be covered by balls with centers in N and radius €. See Figure

(Figure 4.1 in [3]).

Definition 6 (Lipschitz process, Definition 5.4 in [2]). The random process (X;),cq is Lipschitz
for a metric d on T if there exists a random variable L such that for allt,s € T,

| Xt — Xs| < Ld(t,s) a.s.

Example 2 (Example of a Lipschitz process). Consider again the first example, where X, =
|Awlly, for all u € SP~L. Let the metric d be the Euclidean distance d(u,v) = ||u — vl|j2. So
following the definition of Lipschitz process, we will find a random variable L so that

[ Xu — Xo| = [[[Aully — [[Av]]y| < Lflw — v]];.



Figure 1: This covering of a pentagon K by 7 e-balls shows that |[N| =7

Note that

[Aull; = |A (v — v+ ),
< [[Avlly + [[A (u = v)ll,
< [[Avlly + [[Afly [l = ]2

Hence, we obtain that L = ||A||,.
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