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1 Overview

In the last lecture we have (a) derived the concentration bound of the least square estimator of
linear regression model, and (b) investigated a more general case: non-linear models.

In this lecture we will explore the behavior of the suprema of a random processes defined on some
index set T . To see why this is useful in solving high dimensional problems, we can see the following
example. When studying the behavior of the 2-norm of some random matrix A ∈ Rn×m, we can
view the 2-norm as the suprema of the following random processes:

Xx = ∥Ax∥ , x ∈ Sm−1

That is:

∥A∥2 = max
x∈Sm−1

Xx = max
x∈Sm−1

∥Ax∥ .

Remark 1. This lecture aligns closely with section 5.1 and 5.2 in [2].

2 Suprema of Random Process with Finite Index Set

2.1 Extreme Value Theory with i.i.d Random variables

We begin with finding the maximum of a random process (Xt)t∈T whose index set T is finite.

When X1, . . . , Xn are i.i.d random variables with cumulative distribution function (CDF) F (x) =
P (Xi ≤ x) for x ∈ R, the problem becomes simple because we can compute the CDF of the finite
maxima Mn = max1≤i≤nXi directly:

P (Mn ≤ x) = (F (x))n

In particular, for specific examples with polynomial and exponential tails, the following hold as
n → ∞.

Theorem 2 (See e.g. Exercise 3.2.2 in [1]). 1. If F (x) = 1− x−α, for x ≥ 1 and α > 0, then

P
(

Mn

n1/α
≤ y

)
→ exp

(
−y−x

)
.

2. If F (x) = 1− e−x for x ≥ 0, then

P (Mn − log n ≤ y) → exp
(
−e−y

)
.

1



2.2 Extreme Value Theory with Finite Step Sub-Gaussian Random Process

Let (Xt)t∈T be a random process where T is an arbitrary index set, and (Xt)t∈T need not to be
i.i.d random variables.

Example 1. Let A be a random matrix in Rp×p and T = Sp−1, the p-dimensional unit ball. In this
case, we can consider ∥A∥2 as the suprema of a random processes Xu = ∥Au∥2 for all u ∈ Sp−1.

2.2.1 Naive Bound

Asuming we have a finite index set T . How can one bound the maximum of a finite set of random
variables? The most naive approach is to bound the supremum by a sum:

sup
t∈T

Xt ≤
∑
t∈T

|Xt|

Using this inequality, we could get the following bound:

E
(
sup
t∈T

Xt

)
≤ E

(
sup
t∈T

|Xt|
)

≤ E

(∑
t∈T

|Xt|

)
≤
∑
t∈T

E |Xt|

≤ |T | sup
t∈T

E |Xt|

This indicates that if we could control the magnitude of every individual random variable Xt, we
can get a bound that grows linearly in the cardinality |T |. Extending this bound a little bit, by the
Jensen’s Inequality, we get that for p ≥ 1,

E
(
sup
t∈T

Xt

)
≤ E

(
sup
t∈T

|Xt|p
)1/p

≤ |T |1/p sup
t∈T

(E |Xt|p)1/p

Thus if the random variables Xt have bounded p-th moment, the dependence on |T | for this naive
bound can be improved to |T |1/p.

2.2.2 Maximal Inequality for Sub-Gaussian Processes

In the naive bound, we did not make any assumptions for each random variable Xt. In this class,
we are mostly interested in sub-Gaussian random variables. So, for sub-Gaussian random process
(Xt)t∈T , the following theorem provides us a way to bound its suprema. One could look for a
general version of this following theorem in Lemma 5.1 of [2].
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Theorem 3 (Maximal Inequality). Let T be a finite index set. (Xt)t∈T is a random process where

for any t ∈ T , Xt has zero mean and ∥Xt∥2ψ2
≤ σ2. Then,

E
(
sup
t∈T

Xt

)
≤
√

2Cσ2 log |T |

Proof. By Jensen’s Inequality, for any λ > 0, we have

E
(
sup
t∈T

Xt

)
≤ 1

λ
logE

(
eλ supt∈T Xt

)
≤ 1

λ
log
∑
t∈T

E
(
eλXt

)
≤ 1

λ
log
∑
t∈T

E
(
e

λ2Cσ2

2

)
=

1

λ
log

(
|T |e

λ2Cσ2

2

)
=

log |T |
λ

+
λ2Cσ2

2

Now optimize over λ, we get the desired bound.

Exercise 4 (Maximal Tail Inequality, Lemma 5.2 of [2]). Show that

P
(
sup
t∈T

Xt ≥
√
2Cσ2 log |T |+ x

)
≤ e−x

2/2σ2
for all x ≥ 0.

Hint. Use Markov’s inequality and proceed as above.

3 Towards understanding Suprema of Random Process with Infi-
nite Index Set

Before we consider random processes defined on an infinite index set, we need to introduce a couple
of tools first.

Definition 5 (ϵ-net, Definition 5.5 in [2]). Let (T, d) be a metric space, ϵ > 0 and a set K ⊆ T . A
subset N ⊆ K is an ϵ-net of K if for ∀x ∈ K, ∃x0 ∈ N such that d (x, x0) ≤ ϵ. Equivalently, N is
an ϵ-net of K if and only if K can be covered by balls with centers in N and radius ϵ. See Figure
1 (Figure 4.1 in [3]).

Definition 6 (Lipschitz process, Definition 5.4 in [2]). The random process (Xt)t∈T is Lipschitz
for a metric d on T if there exists a random variable L such that for all t, s ∈ T ,

|Xt −Xs| ≤ Ld(t, s) a.s.

Example 2 (Example of a Lipschitz process). Consider again the first example, where Xu =
∥Au∥2, for all u ∈ Sp−1. Let the metric d be the Euclidean distance d(u,v) = ∥u − v∥2. So
following the definition of Lipschitz process, we will find a random variable L so that

|Xu −Xv| = |∥Au∥2 − ∥Av∥2| ≤ L∥u− v∥2.
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Figure 1: This covering of a pentagon K by 7 ϵ-balls shows that |N | = 7

Note that

∥Au∥2 = ∥A (u− v + v)∥2
≤ ∥Av∥2 + ∥A (u− v)∥2
≤ ∥Av∥2 + ∥A∥2 ∥u− v∥2.

Hence, we obtain that L = ∥A∥2.
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