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1 Overview

In the last lecture we have (a) derived the concentration bound of the least square estimator for
linear regression and (b) its generalization: non-linear regression.

In this lecture we shall investigate the suprema of random processes defined on some index set T .
It calls for attention as it shows up in many high-dimensional settings. To name one such example,
we often want to know the behaviour of the 2-norm of some random matrix A ∈ Rn×m. It can be
characterized as a suprema of a random processes on the m-dimensional unit sphere.

‖A‖2 = max
0 6=x∈Rm

‖Ax‖
‖x‖

= max
x∈Sm−1

‖Ax‖ .

Remark 1. This lecture aligns closely with section 5.1 and 5.2 in [2].

2 Extreme Value Theory

But before we delve into the theory of controlling suprema of random processes, we ought to
understand the behaviour of the maximum of a finite number of random variables, i.e., having an
index set T with finite cardinality, |T | <∞.

We briefly mention the well-studied case of i.i.d. random variables. Suppose that X1, . . . , Xn are
i.i.d random variables with cumulative distribution function (CDF) F (x) = P (Xi ≤ x) for x ∈ R.
Then the finite maxima Mn = max1≤i≤nXi has CDF

P (Mn ≤ x) = (F (x))n

In particular, for specific examples with polynomial and exponential tails, the following hold as
n→∞.

Theorem 2 (See e.g. Exercise 3.2.2 in [1]). 1. If F (x) = 1− x−α, for x ≥ 1 and α > 0, then

P
(
Mn

n1/α
≤ y
)
→ exp

(
−y−x

)
.

2. If F (x) = 1− e−x for x ≥ 0, then

P (Mn − log n ≤ y)→ exp
(
−e−y

)
.
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3 Sub-Gaussian and Lipschitz Processes

Let (Xt)t∈T be a random process where T is an arbitrary index set.

Example 1. Let A be a random matrix in Rp×p and T = Sp−1, the p-dimensional unit ball. In
this case, we can consider Xu = ‖Au‖2 as the suprema of a random processes for all u ∈ Sp−1.

3.1 Naive Bound

Asuming we have a finite index set T . How can one bound the maximum of a finite set of random
variables? The most naive approach is to bound the supremum by a sum:

sup
t∈T

Xt ≤
∑
t∈T
|Xt|

Using this inequality, we could get the following bound:

E
(

sup
t∈T

Xt

)
≤ E

(
sup
t∈T
|Xt|

)
≤ E

(∑
t∈T
|Xt|

)
≤
∑
t∈T

E |Xt|

≤ |T | sup
t∈T

E |Xt|

This indicates that if we could control the magnitude of every individual random variable Xt, we
can get a bound that grows linearly in the cardinality |T |. Extending this bound a little bit, by the
Jensen’s Inequality, we get that for p ≥ 1,

E
(

sup
t∈T

Xt

)
≤ E

(
sup
t∈T
|Xt|p

)1/p

≤ |T |1/p sup
t∈T

(E |Xt|p)1/p

Thus if the random variables Xt have bounded p-th moment, the dependence on |T | for this naive
bound can be improved to |T |1/p.

3.2 Maximal Inequality for Sub-Gaussian Processes

So far, we haven not made any assumptions for each random variable Xt. In this class, we are
mostly interested in sub-Gaussian random variables. So, for sub-Gaussian random process (Xt)t∈T ,
the following theorem provides us a way to bound its suprema. One could look for a general version
of this following theorem in Lemma 5.1 of [2].

Theorem 3 (Maximal Inequality). Let T be a finite index set. (Xt)t∈T is a random process where

for any t ∈ T , Xt has zero mean and ‖Xt‖2ψ2
≤ σ2. Then,

E
(

sup
t∈T

Xt

)
≤
√

2Cσ2 log |T |
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Proof. By Jensen’s Inequality, for any λ > 0, we have

E
(

sup
t∈T

Xt

)
≤ 1

λ
logE

(
eλ supt∈T Xt

)
≤ 1

λ
log
∑
t∈T

E
(
eλXt

)
≤ 1

λ
log
∑
t∈T

E
(
e
λ2Cσ2

2

)
=

1

λ
log

(
|T |e

λ2Cσ2

2

)
=

log |T |
λ

+
λ2Cσ2

2

Now optimize over λ, we get the desired bound.

Exercise 4 (Maximal Tail Inequality, Lemma 5.2 of [2]). Show that

P
(

sup
t∈T

Xt ≥
√

2Cσ2 log |T |+ x

)
≤ e−x2/2σ2

for all x ≥ 0.

Hint. Use Markov’s inequality and proceed as above.

3.3 Towards an Infinite Index Set

Now we consider random processes defined on an infinite index set. We need to make a couple of
definitions first.

Definition 5 (ε-net, Definition 5.5 in [2]). Let (T, d) be a metric space, ε > 0 and a set K ⊆ T .
A subset N ⊆ K is an ε-net of K if for any x ∈ K, there exists a x0 ∈ N such that d (x, x0) ≤ ε.
Equivalently, N is an ε-net of K if and only if K can be covered by balls with centers in N and
radii ε. See the next Figure (Figure 4.1 in [3]).

Figure 1: This covering of a pentagon K by 7 ε-balls shows that |N | = 7

Definition 6 (Lipschitz process, Definition 5.4 in [2]). The random process (Xt)t∈T is Lipschitz
for a metric d on T if there exists a random variable L such that for all t, s ∈ T ,

|Xt −Xs| ≤ Ld(t, s) a.s.
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Example 2 (Example of a Lipschitz process). Consider again the first example, where Xu =
‖Au‖2, for all u ∈ Sp−1. Let the metric d be the Euclidean distance d(u,v) = ‖u − v‖2. So
following the definition of Lipschitz process, we will find a random variable L so that

|Xu −Xv| = |‖Au‖2 − ‖Av‖2| ≤ L‖u− v‖2.

Note that

‖Au‖2 = ‖A (u− v + v)‖2
≤ ‖Av‖2 + ‖A (u− v)‖2
≤ ‖Av‖2 + ‖A‖2 ‖u− v‖2.

Hence, we obtain that L = ‖A‖2.
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