MATH888: Hig	gh-dimensional	probability	and statistics	Fall 2021

Lecture 17 — October 15, 2021

Sebastien Roch, UW-Madison

Scribe: Hangdong Zhao, Sebastien Roch

1 Overview

In the last lecture we have (a) derived the concentration bound of the least square estimator for linear regression and (b) its generalization: non-linear regression.

In this lecture we shall investigate the suprema of random processes defined on some index set T. It calls for attention as it shows up in many high-dimensional settings. To name one such example, we often want to know the behaviour of the 2-norm of some random matrix $\mathbf{A} \in \mathbb{R}^{n \times m}$. It can be characterized as a suprema of a random processes on the *m*-dimensional unit sphere.

$$\|\mathbf{A}\|_{2} = \max_{\mathbf{0} \neq \mathbf{x} \in \mathbb{R}^{m}} \frac{\|\mathbf{A}\mathbf{x}\|}{\|\mathbf{x}\|} = \max_{\mathbf{x} \in \mathbb{S}^{m-1}} \|\mathbf{A}\mathbf{x}\|.$$

Remark 1. This lecture aligns closely with section 5.1 and 5.2 in [2].

2 Extreme Value Theory

But before we delve into the theory of controlling suprema of random processes, we ought to understand the behaviour of the maximum of a finite number of random variables, i.e., having an index set T with finite cardinality, $|T| < \infty$.

We briefly mention the well-studied case of i.i.d. random variables. Suppose that X_1, \ldots, X_n are i.i.d random variables with cumulative distribution function (CDF) $F(x) = \mathbb{P}(X_i \leq x)$ for $x \in \mathbb{R}$. Then the finite maxima $M_n = \max_{1 \leq i \leq n} X_i$ has CDF

$$\mathbb{P}\left(M_n \le x\right) = \left(F(x)\right)^n$$

In particular, for specific examples with polynomial and exponential tails, the following hold as $n \to \infty$.

Theorem 2 (See e.g. Exercise 3.2.2 in [1]). 1. If $F(x) = 1 - x^{-\alpha}$, for $x \ge 1$ and $\alpha > 0$, then

$$\mathbb{P}\left(\frac{M_n}{n^{1/\alpha}} \le y\right) \to \exp\left(-y^{-x}\right).$$

2. If $F(x) = 1 - e^{-x}$ for $x \ge 0$, then

$$\mathbb{P}\left(M_n - \log n \le y\right) \to \exp\left(-e^{-y}\right).$$

3 Sub-Gaussian and Lipschitz Processes

Let $(X_t)_{t \in T}$ be a random process where T is an arbitrary index set.

Example 1. Let **A** be a random matrix in $\mathbb{R}^{p \times p}$ and $T = \mathbb{S}^{p-1}$, the p-dimensional unit ball. In this case, we can consider $X_u = \|\mathbf{A}u\|_2$ as the suprema of a random processes for all $u \in \mathbb{S}^{p-1}$.

3.1 Naive Bound

Assuming we have a finite index set T. How can one bound the maximum of a finite set of random variables? The most naive approach is to bound the supremum by a sum:

$$\sup_{t \in T} X_t \le \sum_{t \in T} |X_t|$$

Using this inequality, we could get the following bound:

$$\mathbb{E}\left(\sup_{t\in T} X_t\right) \leq \mathbb{E}\left(\sup_{t\in T} |X_t|\right)$$
$$\leq \mathbb{E}\left(\sum_{t\in T} |X_t|\right)$$
$$\leq \sum_{t\in T} \mathbb{E} |X_t|$$
$$\leq |T| \sup_{t\in T} \mathbb{E} |X_t|$$

This indicates that if we could control the magnitude of every individual random variable X_t , we can get a bound that grows linearly in the cardinality |T|. Extending this bound a little bit, by the Jensen's Inequality, we get that for $p \ge 1$,

$$\mathbb{E}\left(\sup_{t\in T} X_t\right) \leq \mathbb{E}\left(\sup_{t\in T} |X_t|^p\right)^{1/p}$$
$$\leq |T|^{1/p} \sup_{t\in T} \left(\mathbb{E} |X_t|^p\right)^{1/p}$$

Thus if the random variables X_t have bounded *p*-th moment, the dependence on |T| for this naive bound can be improved to $|T|^{1/p}$.

3.2 Maximal Inequality for Sub-Gaussian Processes

So far, we haven not made any assumptions for each random variable X_t . In this class, we are mostly interested in sub-Gaussian random variables. So, for sub-Gaussian random process $(X_t)_{t \in T}$, the following theorem provides us a way to bound its suprema. One could look for a general version of this following theorem in Lemma 5.1 of [2].

Theorem 3 (Maximal Inequality). Let T be a finite index set. $(X_t)_{t\in T}$ is a random process where for any $t \in T$, X_t has zero mean and $||X_t||^2_{\psi_2} \leq \sigma^2$. Then,

$$\mathbb{E}\left(\sup_{t\in T} X_t\right) \le \sqrt{2C\sigma^2 \log |T|}$$

Proof. By Jensen's Inequality, for any $\lambda > 0$, we have

$$\mathbb{E}\left(\sup_{t\in T} X_t\right) \leq \frac{1}{\lambda} \log \mathbb{E}\left(e^{\lambda \sup_{t\in T} X_t}\right)$$
$$\leq \frac{1}{\lambda} \log \sum_{t\in T} \mathbb{E}\left(e^{\lambda X_t}\right)$$
$$\leq \frac{1}{\lambda} \log \sum_{t\in T} \mathbb{E}\left(e^{\frac{\lambda^2 C\sigma^2}{2}}\right)$$
$$= \frac{1}{\lambda} \log\left(|T|e^{\frac{\lambda^2 C\sigma^2}{2}}\right)$$
$$= \frac{\log|T|}{\lambda} + \frac{\lambda^2 C\sigma^2}{2}$$

Now optimize over λ , we get the desired bound.

Exercise 4 (Maximal Tail Inequality, Lemma 5.2 of [2]). Show that

$$\mathbb{P}\left(\sup_{t\in T} X_t \ge \sqrt{2C\sigma^2 \log |T|} + x\right) \le e^{-x^2/2\sigma^2} \quad \text{for all } x \ge 0.$$

Hint. Use Markov's inequality and proceed as above.

3.3 Towards an Infinite Index Set

Now we consider random processes defined on an infinite index set. We need to make a couple of definitions first.

Definition 5 (ϵ -net, Definition 5.5 in [2]). Let (T, d) be a metric space, $\epsilon > 0$ and a set $K \subseteq T$. A subset $N \subseteq K$ is an ϵ -net of K if for any $\mathbf{x} \in K$, there exists a $\mathbf{x}_0 \in N$ such that $d(x, x_0) \leq \epsilon$. Equivalently, N is an ϵ -net of K if and only if K can be covered by balls with centers in N and radii ϵ . See the next Figure (Figure 4.1 in [3]).

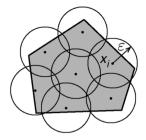


Figure 1: This covering of a pentagon K by 7 ϵ -balls shows that |N| = 7

Definition 6 (Lipschitz process, Definition 5.4 in [2]). The random process $(X_t)_{t\in T}$ is Lipschitz for a metric d on T if there exists a random variable L such that for all $\mathbf{t}, \mathbf{s} \in T$,

$$|X_t - X_s| \le Ld(t, s) \quad a.s$$

Example 2 (Example of a Lipschitz process). Consider again the first example, where $X_{u} = \|\mathbf{A}u\|_{2}$, for all $u \in \mathbb{S}^{p-1}$. Let the metric d be the Euclidean distance $d(u, v) = \|u - v\|_{2}$. So following the definition of Lipschitz process, we will find a random variable L so that

$$|X_u - X_v| = |||\mathbf{A}u||_2 - ||\mathbf{A}v||_2| \le L||u - v||_2.$$

Note that

$$\begin{split} \|\mathbf{A}\boldsymbol{u}\|_{2} &= \|\mathbf{A}\,(\boldsymbol{u}-\boldsymbol{v}+\boldsymbol{v})\|_{2} \\ &\leq \|\mathbf{A}\boldsymbol{v}\|_{2} + \|\mathbf{A}\,(\boldsymbol{u}-\boldsymbol{v})\|_{2} \\ &\leq \|\mathbf{A}\boldsymbol{v}\|_{2} + \|\mathbf{A}\|_{2}\,\|\boldsymbol{u}-\boldsymbol{v}\|_{2}. \end{split}$$

Hence, we obtain that $L = \|\mathbf{A}\|_2$.

References

- [1] Rick Durrett, *Probability—theory and examples (fifth edition)*, Cambridge University Press, 2019.
- [2] Ramon van Handel, APC 550: Probability in High Dimension, Lecture Notes, 2016. https: //web.math.princeton.edu/~rvan/APC550.pdf
- [3] Roman Vershynin, *High-dimensional probability: An introduction with applications in data science*, Cambridge University Press, 2018.