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1 Overview

In the last lecture we have (a) derived the concentration bound of the least square estimator for
linear regression and (b) its generalization: non-linear regression.

In this lecture we shall investigate the suprema of random processes defined on some index set T
It calls for attention as it shows up in many high-dimensional settings. To name one such example,
we often want to know the behaviour of the 2-norm of some random matrix A € R™*™. It can be
characterized as a suprema of a random processes on the m-dimensional unit sphere.
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Remark 1. This lecture aligns closely with section 5.1 and 5.2 in  [2].

2 Extreme Value Theory

But before we delve into the theory of controlling suprema of random processes, we ought to
understand the behaviour of the maximum of a finite number of random variables, i.e., having an
index set T with finite cardinality, |T'| < occ.

We briefly mention the well-studied case of i.i.d. random variables. Suppose that Xi,..., X, are
i.i.d random variables with cumulative distribution function (CDF) F(z) = P(X; < x) for x € R.
Then the finite maxima M,, = maxi<;<, X; has CDF

P(My, < z) = (F(x))"

In particular, for specific examples with polynomial and exponential tails, the following hold as
n — 0.

Theorem 2 (See e.g. Exercise 3.2.2'in [1]). 1. If F(x)=1—2"%, forz > 1 and o > 0, then

M, .
P<n1/a §y> —>exp(—y )

2. If F(x) =1—e"" forx >0, then

P (M, —logn < y) — exp (—e7Y).



3 Sub-Gaussian and Lipschitz Processes

Let (X¢),cr be a random process where T is an arbitrary index set.

Example 1. Let A be a random matriz in RP*P and T = SP~!, the p-dimensional unit ball. In
this case, we can consider X, = |Aul|, as the suprema of a random processes for all u € SP~1,

3.1 Naive Bound

Asuming we have a finite index set 7. How can one bound the maximum of a finite set of random
variables? The most naive approach is to bound the supremum by a sum:

sup X; < Z | X+
teT teT

Using this inequality, we could get the following bound:
E <supXt> <E <sup |Xt|)
teT teT

. (Zw)
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This indicates that if we could control the magnitude of every individual random variable Xy, we
can get a bound that grows linearly in the cardinality |7'|. Extending this bound a little bit, by the
Jensen’s Inequality, we get that for p > 1,
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Thus if the random variables X; have bounded p-th moment, the dependence on |T'| for this naive
bound can be improved to |T|'/?.

3.2 Maximal Inequality for Sub-Gaussian Processes

So far, we haven not made any assumptions for each random variable X;. In this class, we are
mostly interested in sub-Gaussian random variables. So, for sub-Gaussian random process (X¢),cr,
the following theorem provides us a way to bound its suprema. One could look for a general version
of this following theorem in Lemma 5.1 of [2].

Theorem 3 (Maximal Inequality). Let T be a finite index set. (Xy),cp is a random process where
for anyt € T, Xy has zero mean and HXtH?z;g < 0% Then,

E <supXt> < V2Co?log |T|

teT
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Proof. By Jensen’s Inequality, for any A > 0, we have
1
E <sup Xt> < X log E <e>‘ SUPteT Xt)

teT
1
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Now optimize over A, we get the desired bound. ]
Exercise 4 (Maximal Tail Inequality, Lemma 5.2 of [2]). Show that
P (sup X > +\/2Co?log |T| + x) < e~ /20° for all x > 0.
teT

Hint. Use Markov’s inequality and proceed as above.

3.3 Towards an Infinite Index Set

Now we consider random processes defined on an infinite index set. We need to make a couple of
definitions first.

Definition 5 (e-net, Definition 5.5 in [2]). Let (T,d) be a metric space, € > 0 and a set K C T.
A subset N C K is an e-net of K if for any x € K, there exists a &y € N such that d (z,x¢) < e.
Equivalently, N is an e-net of K if and only if K can be covered by balls with centers in N and
radii €. See the next Figure (Figure 4.1 in [J]).

Figure 1: This covering of a pentagon K by 7 e-balls shows that |[N| =7

Definition 6 (Lipschitz process, Definition 5.4 in [2]). The random process (Xi),cq is Lipschitz
for a metric d on T if there exists a random variable L such that for allt,s € T,

| Xt — Xs| < Ld(t,s) a.s.



Example 2 (Example of a Lipschitz process). Consider again the first example, where X, =
|Awlly, for all u € SP~1. Let the metric d be the Euclidean distance d(u,v) = ||u — vl|j2. So
following the definition of Lipschitz process, we will find a random variable L so that

| Xu — Xo| = [[[Au|ly — [Av]|y] < Llju — v]l2.
Note that

[Aull; = |A (v — v+ ),
< [[Avlly + [[A (u —v)ll,
< [[Avlly + [[Afly [l = ]2

Hence, we obtain that L = ||A||,.
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