MATH888: High-dimensional probability and statistics

Fall 2021

Lecture 18 — October 18, 2021

Sebastien Roch, UW-Madison

Scribe: Cheuk Yin (Eric) Lin, Sebastien Roch

1 Suprema of Processes : ϵ -net

Let us first recall the definition of an ϵ -net of K, then we introduce a new quantity called the covering number of a set K. See Figure 3 for a visual illustration.

Definition 1 (ϵ -net, Definition 4.2.1 in [3]). Let (T, d) be a metric space, $\epsilon > 0$ and a set $K \subseteq T$. A subset $N \subseteq K$ is an ϵ -net of K if for any $\mathbf{x} \in K$, there exists a $\mathbf{x}_0 \in N$ such that $d(\mathbf{x}, \mathbf{x}_0) \leq \epsilon$. Equivalently, N is an ϵ -net of K if and only if K can be covered by balls with centers in N and radii ϵ .

Definition 2 (Covering number, Definition 4.2.2 in [3]). The smallest cardinality of an ϵ -net of K is called the covering number and is denoted $\mathcal{N}(K,\epsilon)$. Equivalently, $\mathcal{N}(K,\epsilon)$ is the smallest number of closed balls with centers in K and radii ϵ whose union covers K.

Figure 1: On the left figure, the pentagon K is covered by an ϵ -net of 6 balls. On the right figure, the pentagon K is covered by another ϵ -net of 5 and is the smallest cardinality of any ϵ -net of K, hence the covering number of K is 5.

Remark 3. The closure of K is a compact set if and only if $\mathcal{N}(K, \epsilon)$ is finite for every $\epsilon > 0$.

Definition 4. The process $(X_t)_{t\in T}$ is Lipschitz if there exists a random variable L such that $|X_t - X_s| \leq Ld(s,t)$ for all $s,t\in T$ almost surely.

Let us introduce a theorem which bounds the suprema of a random process given some niceness.

Theorem 5. Suppose that a random process $(X_t)_{t\in T}$ is Lipschitz, mean zero, and that $||X_t||_{\psi_2} \leq \sigma$ for all $t\in T$. Then

$$\mathbb{E}\left(\sup_{t\in T} X_t\right) \leq \inf_{\epsilon>0} \left\{ \epsilon \mathbb{E}[L] + \sqrt{C\sigma^2 \log \mathcal{N}(T,\epsilon)} \right\}.$$

Proof. For $t \in T$, let $\pi(t)$ be the closet point in an ϵ -net of T of smallest cardinality. Then we have

$$\sup_{t \in T} X_t = \sup_{t \in T} \left(X_t - X_{\pi(t)} + X_{\pi(t)} \right)$$

$$\leq \sup_{t \in T} \left(X_t - X_{\pi(t)} \right) + \sup_{t \in T} X_{\pi(t)}$$

$$\leq \epsilon L + \sup_{s \in N} X_s \quad \text{by L-Lipschitz.}$$

Taking expectations on both sides, we get

$$\mathbb{E}\left(\sup_{t\in T} X_t\right) \le \epsilon \mathbb{E}(L) + \sup_{s\in N} \mathbb{E}(X_s).$$

Result follows immediately by applying the bound for $\sup_{s\in N} \mathbb{E}(X_s)$ as shown in the previous lecture and taking the infimum of the R.H.S. over $\epsilon > 0$.

Definition 6 (ϵ -separated and packing number, Definition 4.2.4 in [3]). A subset $N \subseteq K \subseteq T$ is ϵ -separated if $d(\mathbf{x}, \mathbf{y}) > \epsilon$ for all $\mathbf{x}, \mathbf{y} \in N$. The largest cardinality of an ϵ -separated set of K is called the packing number and is denoted $\mathcal{P}(K, \epsilon)$.

Lemma 7 (Nets from separated sets, Lemma 4.2.6 in [3]). Let N be a maximal ϵ -separated subset of K. Then N is an ϵ -net of K.

Proof. Suppose $x \notin N$, then $N \cup \{x\}$ is not ϵ -separated by definition, hence a contradiction. \square

Figure 2: On the left figure, let N be the set of the all dotted points and by definition N is ϵ -separated. On the right figure, N is a maximal ϵ -separated subset of K and thus is an ϵ -net of K.

Lemma 8 (Equivalence of covering and packing number, Lemma 4.2.8 in [3]). For any set $K \subset T$ and for any $\epsilon > 0$, we have $\mathcal{P}(K, 2\epsilon) \leq \mathcal{N}(K, \epsilon) \leq \mathcal{P}(K, \epsilon)$.

Proof. The upper bound of $\mathcal{N}(K, \epsilon)$ follows directly from Lemma 7. To prove the lower bound, choose an 2ϵ -separated subset $\mathcal{P} = \{x_i\}$ in K and an ϵ -net $\mathcal{N} = \{y_i\}$ of K. By the definition of a net, each point x_i belongs to a closed ϵ -ball centered at some point y_i . Moreover, since any closed ϵ -ball cannot contain a pair of 2ϵ -separated points, each ϵ -ball centered at y_i may contain at most one point x_i . We can then conclude that $|\mathcal{P}| \leq |\mathcal{N}|$ by the pigeonhole principle.

Definition 9 (Minkowski sum). The Minkowski sum of sets A and $B \subseteq \mathbb{R}^n$ is

$$A + B = \{a + b \mid a \in A, b \in B\}.$$

Lemma 10 (Covering number and volume, Lemma 4.2.12 in [3]). Let K be a subset of \mathbb{R}^n and $\epsilon > 0$. Then

$$\frac{|K|}{|\epsilon B_2^n|} \le \mathcal{N}(K, \epsilon) \le \mathcal{P}(K, \epsilon) \le \frac{|K + (\epsilon/2)B_2^n|}{|(\epsilon/2)B_2^n|},$$

where $|\cdot|$ denotes the volume in \mathbb{R}^n , B_2^n denotes the unit Euclidean ball in \mathbb{R}^n , so $\epsilon \mathbb{R}^n$ is an Euclidean ball with radius ϵ .

Figure 3: On the left figure, we can see that the covering number must be lower bounded by the number of ϵ -balls that can be fitted into K. On the right figure, we can see that the packing number must be upper bounded by the number of $(\epsilon/2)$ -ball that can be fitted into the $(\epsilon/2)$ -padded K.

References

- [1] Rick Durrett, *Probability—theory and examples (fifth edition)*, Cambridge University Press, 2019.
- [2] Ramon van Handel, APC 550: Probability in High Dimension, Lecture Notes, 2016. https://web.math.princeton.edu/~rvan/APC550.pdf
- [3] Roman Vershynin, High-dimensional probability: An introduction with applications in data science, Cambridge University Press, 2018.