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1 Overview

In the last lecture we have (a) studied the cover number and packing number of a set K and their
equivalence, (b) proved the bound of the suprema of Lipschitz sub-gaussian random processes,
(c) introduced the definition of ε-separated and it induces ε-nets, and (d) discussed the relation
between the cover number and the volume of K in Rn.

In this lecture we first introduce some useful preliminaries on isometries and approximate isometries,
and then prove the two-sided bound on sub-gaussian matrices.

2 Isometries and Approximate Isometries

We begin by describing the preliminaries on isometries and approximate isometries. We can refer to
the slides https://people.math.wisc.edu/~roch/hdps/roch-hdps-slides19.pdf and Section
4.1.5 in [1]. Here we introduce a lemma about approximate isometries that will be useful for
proving the bound in Section 3, and its proof can be found in [1].

Lemma 1 (Approximate isometries, Exercise 4.1.4 in [1]). Let A be an m × n matrix and δ > 0.
Suppose that

∥A⊤A− In∥ ≤ max(δ, δ2).

Then
(1− δ)∥x∥2 ≤ ∥Ax∥2 ≤ (1 + δ)∥x∥2 for all x ∈ Rn.

Consequently, all singular values of A are between 1− δ and 1 + δ:

1− δ ≤ sn(A) ≤ s1(A) ≤ 1 + δ.

3 Bound on Sub-gaussian Matrices

Now we are ready to prove a two sided bound on the entire spectrum of an m × n sub-gaussian
matrix A.

Theorem 2 (Two-sided bound on sub-gaussian matrices, Theorem 4.6.1 in [1]). Let A be an m×n
matrix whose rows Ai are independent, mean zero, sub-gaussian isotropic random vectors in Rn.
Then for any t ≥ 0 we have

√
m− CK2(

√
n+ t) ≤ sn(A) ≤ s1(A) ≤

√
m+ CK2(

√
n+ t) (1)

with probability at least 1− 2 exp(−t2). Here K = maxi ∥Ai∥ψ2.
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We have the following observations about this bound.

Remark 1. A tall random matrix A with m ≫ n is an approximate isometry.

Remark 2. Here the independence of entries is going to be relaxed to just independence of rows.
This relaxation is quite important in some data science applications, where the rows of A could be
samples from a high-dimensional distribution. The samples are usually independent, but the coor-
dinates of the distribution (the “parameters”) are usually not independent. So it is not reasonable
to assume the independence of columns of A.

The main idea to prove this bound is to use an ε-net argument with Bernstein’s concentration
inequality. Note that by Lemma 1 we can prove a slightly stronger bound instead other than (1),
i.e.

∥ 1

m
A⊤A− In∥ ≤ K2max(δ, δ2), (2)

where δ = C
(√

n
m + t√

m

)
and C is a large enough constant to be determined later. Before we

come to prove Theorem 2, we first introduce two lemmas that will be used in the main proof.

Lemma 3 (Operator norm on a net, Lemma 4.4.1 and Exercise 4.4.3 in [1]). Let A be an m × n
matrix and ε ∈ [0, 1). Then for any ε-net N of the sphere Sn−1, we have

(a) ∥A∥ ≤ 1
1−ε · supx∈N ∥Ax∥2.

(b) If m = n and A is symmetric and ε ∈ [0, 1/2), then ∥A∥ ≤ 1
1−2ε · supx∈N |⟨Ax,x⟩|.

Proof.

(a) Take a vector x ∈ Sn−1 such that ∥A∥ = ∥Ax∥2, and choose a y ∈ N such that ∥x− y∥2 ≤ ε
to approximate x. By the definition of the operator norm, we have

∥Ax−Ay∥2 = ∥A (x− y)∥2 ≤ ∥A∥ ∥x− y∥2 ≤ ε∥A∥.

Using triangular inequality, we obtain

∥Ay∥2 ≥ ∥Ax∥2 − ∥Ax−Ay∥2 ≥ ∥A∥ − ε∥A∥ = (1− ε)∥A∥.

Dividing both sides by 1− ε and ∥Ay∥2 ≤ supx∈N ∥Ax∥2, we complete the proof.

(b) By the definition of the operator norm from the quadratic from aspect and since A is symmetric,
we take a vector x ∈ Sn−1 such that ∥A∥ = ⟨Ax,x⟩. Also, we choose a y ∈ N ⊆ Sn−1 such
that ∥x− y∥2 ≤ ε. Then by Cauchy-Schwarz inequality, we have

|⟨Ax,x− y⟩| ≤ ∥Ax∥2∥x− y∥2
(i)

≤ ε∥A∥∥x∥2
(ii)
= ε∥A∥,

where (i) is by the definition of the operator norm, and (ii) is due to x ∈ Sn−1. Similarly, we
can have

|⟨A(x− y),y⟩| ≤ ∥A(x− y)∥2∥y∥2 ≤ ∥A∥∥x− y∥2 ≤ ε∥A∥.
By triangular inequality, we obtain

|⟨Ay,y⟩| ≥ |⟨Ax,x⟩|− |⟨Ax,x⟩− ⟨Ay,y⟩| = ∥A∥− |⟨Ax,x−y⟩− ⟨A(x−y),y⟩| ≥ (1− 2ε)∥A∥.

Dividing both sides by 1− 2ε and |⟨Ay,y⟩| ≤ supx∈N |⟨Ax,x⟩|, we complete the proof.
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Lemma 4 (Covering numbers of the Euclidean ball, Corollary 4.2.13 in [1]). The covering number
of the unit Euclidean ball Bn

2 satisfy the following for any ε > 0:

N (Bn
2 , ε) ≤

(
2

ε
+ 1

)n
.

The same bound is also true for the unit Euclidean sphere Sn−1.

Proof. This is a corollary of Proposition 4.2.12 in [1] (also Lemma 10 in Lecture 18 https:

//people.math.wisc.edu/~roch/hdps/roch-hdps-scribe18.pdf). In fact, since the volume in
Rn scales as |cBn

2 | = cn|Bn
2 | for any c > 0, we have

N (Bn
2 , ε) ≤

|(1 + ε/2)Bn
2 |

|(ε/2)Bn
2 |

=
(1 + ε/2)n

(ε/2)n
=

(
2

ε
+ 1

)n
.

The bound for the sphere Sn−1 can be proved in the same way.

With these two lemmas above, we then come to prove Theorem 2.

Proof. By Lemma 1, it is sufficient to prove Inequality (2), i.e.

∥ 1

m
A⊤A− In∥ ≤ K2max(δ, δ2),

where δ = C
(√

n
m + t√

m

)
and C is a constant to be determined later. By the definition of the

operator norm, we know that∥∥∥∥ 1

m
A⊤A− In

∥∥∥∥ = sup
x∈Sn−1

∣∣∣∣〈( 1

m
A⊤A− In

)
x,x

〉∣∣∣∣ .
Here we consider choosing an appropriate ε-netN of the unit sphere Sn−1 and evaluate the operator
norm on the N . By Lemma 4, we can find a 1

4 -net N of Sn−1 with cardinality |N | ≤ 9n. Then by
Lemma 3, with setting ε = 1

4 , we can obtain that∥∥∥∥ 1

m
A⊤A− In

∥∥∥∥ ≤ 2 sup
x∈N

∣∣∣∣〈( 1

m
A⊤A− In

)
x,x

〉∣∣∣∣ = 2 sup
x∈N

∣∣∣∣ 1m∥Ax∥22 − 1

∣∣∣∣ . (3)

Note that for any x ∈ Sn−1, we can express ∥Ax∥22 as a sum of random variables:

∥Ax∥22 =
m∑
i=1

⟨Ai,x⟩2 =:

m∑
i=1

X2
i .

Since Ai are independent, isotropic, and sub-gaussian random vectors with ∥Ai∥ψ2
≤ K, Xi =

⟨Ai, x⟩ here are also independent sub-gaussian random variables with EX2
i = 1 and ∥Xi∥ψ2

≤ K.

Therefore, we can construct independent, mean zero, and sub-exponential random variables X2
i −1

such that ∥∥X2
i − 1

∥∥
ψ1

≤ CK2

for some constant C > 0, which can be verified as in the proof of Theorem 3.1.1 in [1] (also Theorem
3 in Lecture 8 https://people.math.wisc.edu/~roch/hdps/roch-hdps-scribe8.pdf).
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So we can use Bernstein’s inequality, and obtain that for ε = K2max
(
δ, δ2

)
> 0,

P
{∣∣∣∣ 1m∥Ax∥22 − 1

∣∣∣∣ ≥ ε

2

}
= P

{∣∣∣∣∣ 1m
m∑
i=1

X2
i − 1

∣∣∣∣∣ ≥ ε

2

}

≤ 2 exp

[
−cmin

(
ε2

K4
,
ε

K2

)
m

]
(i)
= 2 exp

[
−cδ2m

]
(ii)

≤ 2 exp
[
−cC2

(
n+ t2

)]
,

(4)

where (i) is due to ε
K2 = max

(
δ, δ2

)
and (ii) can be derived by using the fact that (a+b)2 ≥ a2+b2

for a, b ≥ 0.

Recalling that N has cardinality bounded by 9n, then by Inequality (4) we have

P
{
sup
x∈N

∣∣∣∣ 1m∥Ax∥22 − 1

∣∣∣∣ ≥ ε

2

}
≤ 9n · 2 exp

[
−cC2

(
n+ t2

)] (i)

≤ 2 exp
(
−t2

)
, (5)

where (i) can be obtained by choosing large enough C > 0. With combining Inequalities (5) and
(3), we complete the proof.
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