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1 Overview

In the last lecture, we showed the bound on approximate isometries. In this lecture, we focus on
estimating the covariance matrix from finite sample, which has a well-known application in the
principal components analysis (PCA). And the material follows from section 4.7, 5.2, 9.2 in [3].

2 Covariance estimation

Let X ∈ Rd be a random vector with mean zero, the covariance matrix is Σ := EXX>, i.e Σij =
EXiXj . We first show the following property of covariance matrix. For u ∈ Sd−1, E〈X,u〉 = 0 as
X is mean zero, then

V ar〈X,u〉 = E
(
〈X,u〉2

)
= Eu>XX>u = u>E(XX>)u = u>Σu (1)

Suppose there are n i.i.d samples X(1), · · · ,X(n) ∼ X, the sample covariance is defined as

Σ̂n =
1

n

n∑
i=1

X(i)X(i)>

Put differently, let A ∈ Rn×d have row i is X(i), then Σ̂n = A>A
n .

2.1 Corvariance estimation for high dimensional distributions

Recall the following theorem we proved last time for sub-gaussian isotropic random vectors.

Theorem 1 (Theorem 4.6.1 in [3]). Let A ∈ Rn×d have rows that are independent, mean zero,
sub-gaussian isotropic random vectors with K = maxi=1,···n ‖Ai·‖ψ2

, then with probability 1− 2e−u,∥∥∥∥ 1

n
A>A− Id

∥∥∥∥
2

≤ CK2

(√
d+ u

n
+
d+ u

n

)

Remark 2. Since rows of A are isotropic whose covariance are Id,
∥∥ 1
nA>A− Id

∥∥
2

=
∥∥∥Σ̂n −Σ

∥∥∥
2
.

Next, we extend to the general sub-gaussian setting.
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Theorem 3 (Theorem 4.7.1 in [3] ). Let X be a sub-gaussian random vector in Rd with invertible
covariance matrix Σ s.t

‖〈X,u〉‖ψ2
≤ K

√
E(〈X,u〉2) for all u ∈ Sd−1

with probability 1− 2e−u, then∥∥∥Σ̂n −Σ
∥∥∥
2
≤ CK2 ‖Σ‖2

(√
d+ u

n
+
d+ u

n

)
.

Remark 4. E(〈X,u〉2) = 〈u,Σu〉 by (1).

Proof. We first bring the random vectors X1, · · · ,Xn to the isotropic position. By slides(https:
//people.math.wisc.edu/~roch/hdps/roch-hdps-slides12.pdf) or Exercise 3.2.2 in [3], there
exist isotropic mean zero vectors Z(1), · · · ,Z(n) s.t

X(i) = Σ1/2Z(i), for all i = 1, · · · , n.

We proved previously,
∥∥Z(i)

∥∥
ψ2
≤ K. Let R̂n := 1

n

∑n
i=1 Z(i)Z(i)> − Id, then∥∥∥Σ̂n −Σ

∥∥∥
2

=
∥∥∥Σ1/2R̂nΣ

1/2
∥∥∥
2
≤
∥∥∥R̂n

∥∥∥
2
‖Σ‖2

where we apply the property ‖AB‖2 ≤ ‖A‖2 ‖B‖2 and
∥∥A1/2

∥∥2
2

=
(√

σmax(A)
)2

= ‖A‖2.

Consider the n× d random matrix A whose rows are Z(i), then

1

n
A>A− Id =

1

n

n∑
i=1

Z(i)Z(i)> − Id = R̂n

Then we conclude by applying Theorem 1 for A.

2.2 Covariance estimation for lower-dimensional distributions

We found that the covariance matrix Σ of an n-dimensional distribution can be estimated from
m = O(n) sample points for sub-gaussian distributions. For approximately lower-dimensional
distributions, smaller sample can be sufficient for covariance estimation, which means that the
distribution tends to concentrate near a small subspace.

Theorem 5 (Theorem 9.2.4 in [3]). Let X be a sub-gaussian random vector in Rd with invertible
covariance matrix Σ s.t

‖〈X,u〉‖ψ2
≤ K

√
E(〈X,u〉2) for all u ∈ Sd−1

with probability 1− 2e−u, then∥∥∥Σ̂n −Σ
∥∥∥
2
≤ CK4 ‖Σ‖2

(√
r + u

n
+
r + u

n

)
.

where r = tr(Σ)/ ‖Σ‖2.
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2.3 General covariance estimation

Next, we state a more general version of covariance estimation by applying matrix Berstein in-
equality, see the slides(https://people.math.wisc.edu/~roch/hdps/roch-hdps-slides20.pdf)
for more details.

Theorem 6 (Theorem 5.6.1 in [3]). Let X be a random vector in Rd, d ≥ 2. Assume that for some
K ≥ 1,

‖X‖2 ≤ K
(
E ‖X‖22

)1/2
almost surely.

Then, with probability 1− 2e−u, we have

∥∥∥Σ̂n −Σ
∥∥∥
2
≤ C ‖Σ‖2

(√
K2r(log d+ u)

n
+
K2r(log d+ u)

n

)

where r = tr(Σ)/ ‖Σ‖2 ≤ n.
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