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1 Overview

In the last lecture, we discussed estimation of the covariance matrix of both subgaussian and more
general random vectors. In this lecture, we discuss an application to principal component analysis
(PCA). This lecture is based on Section 8.2 from Wainwright [1].

2 Application to Principal Component Analysis

2.1 General Setting and Goal

Recall the setting of covariance estimation from the previous lecture: For a mean-zero random
vector X ∈ Rd, the covariance matrix is Σ := E

[
XX>

]
, so that Σij = E [XiXj ].

PCA is a dimension-reduction technique. X may be a high-dimensional, but its action might be
mostly concentrated in lower dimensional space. Hence we are interested in estimating the direction
u ∈ Sd−1 that maximizes the variance of the scalar projection 〈X,u〉. Define

u1 ∈ argmaxu∈Sd−1Var [〈X,u〉] .

Since X is mean-zero, it follows that 〈X,u〉 is also mean-zero. Therefore Var [〈X,u〉] = E
[
〈X,u〉2

]
.

Moreover, at the beginning of the previous lecture we showed that E
[
〈X,u〉2

]
= 〈u,Σu〉. Therefore

u1 ∈ argmaxu∈Sd−1 〈u,Σu〉 .

Therefore by variational calculus (See, e.g. the “Review of eigenvalues” section in Lecture 16), the
solution u1 is the maximal eigenvector of Σ (i.e. corresponding to the largest eigenvalue of Σ,)

Remark: Having obtained the first principal component u1, we could then go on to obtain u2 ∈
argmaxu∈Sd−1∩span{u1}⊥Var(〈X,u〉) and so forth... but we won’t do that today.)

Given n i.i.d. samples X(1), . . . ,X(n) ∼ X, the sample covariance is defined as

Σ̂n :=
1

n

n∑
i=1

X(i)X(i)> (1)

Our goal is to estimate u1 with these samples. To this end, define

û ∈ argmaxu∈Sd−1

〈
u, Σ̂u

〉
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We wish to know how close are u1 and û. In particular, we wish to estimate ‖u1 − û1‖2, the
Euclidean distance between u1 and û. Equipped with the theorems from the previous lecture, we

have estimates of
∥∥∥Σ̂n −Σ

∥∥∥; moreover, Σ̂ can be seen as a perturbation Σ, so we shall utilize

perturbation theorems as well.

We consider the following toy model.

2.2 Spiked Covariance Model

Definition 1 (Spiked covariance model). Let W ∈ Rd be an isotropic, subgaussian random vector
with mean zero, and let ε be an independent real-valued subgaussian random variable with mean zero
and variance 1.1 The spiked covariance model is given by the random vector X with distribution

X ∼W +
√
νεθ∗

where ν > 0, θ∗ ∈ Sd−1 are fixed.

The idea here is that θ∗ is a “secret direction”, so that we are adding variation in the θ∗ direction.
The constant ν can be thought of as the “strength” of the hidden signal.

Since X is mean-zero and isotropic, its covariance is easily computed as

Σ = Id + νθ∗θ∗>

where Id is the d × d identity matrix. The θ∗ direction maximizes variance. Indeed, θ∗ = u1 has
eigenvalue 1+ν since Σθ∗ = (1+ν)θ∗ whereas if 〈z,u1〉 = 0 then z is an eigenvector with eigenvalue
1, since Σz = z. Hence the eigengap is (1 + ν)− 1 = ν.

We make the further assumption that the subgaussian norms are all 1. Call this assumption (∗).

Theorem 2 (Cor 8.7 in [1]). Assume n > d. Given n iid samples from the spiked covariance model

with (∗), and assuming that
√

ν+1
ν2

√
d
n ≤ C0, it holds that if θ̂ is the maximal eigenvector of Σ̂n,

then
∥∥∥θ̂ − θ∗∥∥∥

2
≤ C1

√
ν+1
ν2

√
d
n with probability 1− C2 exp{−C3d}.

Remarks:

1. The assumption that
√

ν+1
ν2

√
d
n ≤ C0 means that d

n cannot be too large.

2. The constants C1, C2, and C3 are universal, i.e. they do not depend on n or d.

2.3 A Perturbation Bound

Consider the perturbation matrix P := Σ̂−Σ. Consider the real d× d orthonormal matrix U
whose columns are the eigenvectors of Σ. Then U = (θ∗|U2) where U2 is a d× (d−1) matrix whose
columns are an orthonormal basis of span {θ∗}⊥. Define the transformed perturbation matrix

P̃ := U>PU =

(
p̃11 p̃>

p̃ P̃22

)
1Note [1] uses ξ rather than ε
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where p̃11 ∈ R, p̃ ∈ Rd−1, and P̃22 ∈ R(d−1)×(d−1).

We will use the following bound version of Davis-Kahan (see Lecture 16) to prove Theorem 2.

Theorem 3 (Theorem 8.5 in [1]). If ‖P‖2 <
ν
2 then∥∥∥θ̂ − θ∗∥∥∥
2
≤

2 ‖p̃‖2
ν − 2 ‖P‖2

Remark: This theorem is similar to the more basic Davis-Kahan result discussed in Lecture 16
(Theorem 4.5.5 in Vershynin [2]). To see the similarity, note that since ‖θ∗‖2 = 1 and

∥∥U>2 ∥∥2 = 1,

‖p̃‖2 =
∥∥∥U>2 Pθ∗

∥∥∥
2
≤
∥∥∥U>2 ∥∥∥

2
‖P‖2 ‖θ

∗‖2 = ‖P‖2 =
∥∥∥Σ̂−Σ

∥∥∥
2

so that by also using the inequality ‖P‖2 < ν/2, the right hand side of Theorm 3 can be bounded

above by C
∥∥∥Σ̂−Σ

∥∥∥
2
.

2.4 Preview of Proof of Theorem 2

In order to gainfully employ Theorem 3 in order to prove Theorem 2, it is necessary to bound both
‖P‖2 and ‖p̃‖2. Since X(i) = wi +

√
νεiθ

∗ for i = 1, . . . , n, therefore by (1)

Σ̂n =
1

n

n∑
i=1

[
wi +

√
νεiθ

∗] [wi +
√
νεiθ

∗]> .
Using this, the perturbation matrix may be decomposed in the following way:

P = Σ̂n −Σ

= ν

(
1

n

n∑
i=1

ε2i − 1

)
θ∗θ∗> +

√
ν
(
w̄θ∗> + θ∗w̄>

)
+

(
1

n

n∑
i=1

wiw
>
i − Id

)

where w̄ = 1
n

∑n
i=1 εiwi. We then deal with each of the terms individually, which is the subject of

the next lecture.
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