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1 Overview

In the last lecture we applications to principal component analysis and previewed the proof of Cor.
8.7 in [1].

In this lecture we finish the proof of Cor. 8.7.

2 Review of Last Lecture

Reviewing last lecture, we talked about the spiked covariance model. As a review of the setup:

Definition 1. Let W ∈ Rd be an isotropic, subgaussian random vector with mean zero and norm
≤ 1, and let ϵ be an independent real-valued subgaussian random variable with mean zero and
variance 1.1 The spiked covariance model is given by the random vector X with distribution

X ∼ W +
√
νϵθ∗

where ν > 0, θ∗ ∈ Sd−1 are fixed.

With this model in mind, we defined the following matrix:

Σ̂n =
1

n

n∑
i=1

X(i)X(i)⊤

and the corresponding θ̂ ∈ Rd, the max eigenvalue of Σ̂n. With these definitions in mind, we stated
the following theorem from [1]

Theorem 2. Assume n > d. Given n iid samples from the spiked covariance model with (∗),
and assuming that

√
ν+1
ν2

√
d
n ≤ C0, it holds that if θ̂ is the maximal eigenvector of Σ̂n, then

θ̂ − θ∗2 ≤ C1

√
ν+1
ν2

√
d
n with probability 1− C2 exp{−C3d}.

Recall the perturbation matrix from last lecture, P := Σ̂n −Σ. Define the following:

p̃ = U2
⊤Pθ∗

where the columns of U2 ∈ Rd×d−1 form an orthonormal basis of θ∗⊤

We have the following lemma, (Thm 8.5 in [1]), which we do not prove in lecture, but the proof
boils down to linear algebra calculations.

1Note [1] uses ξ rather than ϵ
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Theorem 3 (Theorem 8.5 in [1]). If ∥P∥2 < ν
2 then

∥θ̂ − θ∗∥2 ≤
2∥p̃∥2

ν − 2∥P∥2

3 Proof of Theorem 2

Now we present the proof of Theorem 2 by applying Theorem 3. To do this, we bound the norm
of P.

Proof. The idea of the proof is to divide P into three contributions.

P = Σ̂n −Σ

= ν

(
1

n

n∑
i=1

ϵ2i − 1

)
θ∗θ∗⊤ +

√
ν
(
w̄θ∗⊤ + θ∗w̄⊤

)
+

(
1

n

n∑
i=1

wiw
⊤
i − Id

)

where w̄ = 1
n

∑n
i=1 ϵiwi. Intuitively, the terms break up in the following way. The first term is

the main contributions from θ∗, the middle term deals with both the contributions from w̄ and θ∗.
The last term deals with the expectation of the values of wi. Call the first term P1, the second
term P2, the third term P3. By the triangle inequality, we have that:

∥P∥2 < ∥P1∥2 + ∥P2∥2 + ∥P3∥2

We go through these individually. Starting with P3, previously we showed that with probability
1− 2e−u that:

∥P3∥ ≤ C(

√
d+ u

n
+

d+ u

n
)

So we take u = cd. Use the fact that ∥W(i)∥2 ≤ 1 to get that:

∥P3∥ ≃ c′
√

d

n

Turning to P1, we have that the expectation of ϵ2i is 1 because we took it be mean zero, variance
1 and subgaussian. We can consider each piece of P1 separately as:

∥P1∥2 ≤ ν| 1
n

n∑
i=1

ϵ2i − 1|∥θ∗θ∗⊤∥2

Note that ∥θ∗θ∗⊤∥2 = 1. We also have the following lemma (Lemma 2.7.7 in [2]):

Lemma 4. If X,Y are sub-gaussian, then:

∥XY ∥ψ1 ≤ ∥X∥ψ2∥Y ∥ψ2

In particular, ∥ϵ2i ∥ψ1 ≤ 1.
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Let z = | 1n
∑n

i=1 ϵ
2
i − 1|. By Bernstein’s inequality and the fact that the expectation of ϵ2 is 1, we

prove using Cor 2.8.3 in [2] that:

P(z ≥ t) ≤ 2 exp(−cmin(t2, t)n)

where n is the number of samples. Take t = c
√

d
n . Letting this c be as small as we’d like, then we

can get the bound:

∥P1∥2 ≤
ν

8

Using Lemma 3 above, we can also get that:

∥P2∥2 ≤
√
ν · 2∥w̄θ∗⊤∥2 ≤ 2

√
ν∥w̄∥2

Now we get the following series of claims.

Claim 5. With probability 1− ce−c
′d, we have that:

∥w̄∥2 ≤ c′′
√

d

n

Suppose Claim 4 is true, then we have:

Claim 6. With probability 1− ce−c
′d, we have that:

∥P2∥2 ≤ c′′
√
ν

√
d

n

Suppose both Claim 4 and 5 are true, then we have:

Claim 7. With probability 1− ce−c
′d

∥P∥2 <
ν

4

The key to this claim is the assumption that
√

ν+1
ν2

√
d
n ≤ C0. By letting C0 be small enough, then

we can get the above claim by combining the remaining inequalities. With this claim, we’re one
step closer to applying Theorem 2 (Thm 8.5 in [1]) to finish the proof of Cor. 8.7.
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