MATH888: High-dimensional probability and statistic	s Fall 2021
Lecture 22 — October 27, 2021	
Sebastien Roch, UW-Madison	Scribe: Sang Yup Han

1 Overview

In the last lecture we applications to principal component analysis and previewed the proof of Cor. 8.7 in [1].

In this lecture we finish the proof of Cor. 8.7.

2 Review of Last Lecture

Reviewing last lecture, we talked about the spiked covariance model. As a review of the setup:

Definition 1. Let $\mathbf{W} \in \mathbb{R}^d$ be an isotropic, subgaussian random vector with mean zero and norm ≤ 1 , and let ϵ be an independent real-valued subgaussian random variable with mean zero and variance 1.¹ The **spiked covariance model** is given by the random vector \mathbf{X} with distribution

$$\mathbf{X} \sim \mathbf{W} + \sqrt{\nu} \epsilon \theta^*$$

where $\nu > 0$, $\theta^* \in \mathbb{S}^{d-1}$ are fixed.

With this model in mind, we defined the following matrix:

$$\hat{\boldsymbol{\Sigma}}_n = \frac{1}{n} \sum_{i=1}^n \mathbf{X}^{(i)} \mathbf{X}^{(i)\top}$$

and the corresponding $\hat{\theta} \in \mathbb{R}^d$, the max eigenvalue of $\hat{\Sigma}_n$. With these definitions in mind, we stated the following theorem from [1]

Theorem 2. Assume n > d. Given n iid samples from the spiked covariance model with (*), and assuming that $\sqrt{\frac{\nu+1}{\nu^2}}\sqrt{\frac{d}{n}} \leq C_0$, it holds that if $\hat{\theta}$ is the maximal eigenvector of $\hat{\Sigma}_n$, then $\hat{\theta} - \theta^*_2 \leq C_1 \sqrt{\frac{\nu+1}{\nu^2}} \sqrt{\frac{d}{n}}$ with probability $1 - C_2 \exp\{-C_3 d\}$.

Recall the perturbation matrix from last lecture, $\mathbf{P} := \hat{\boldsymbol{\Sigma}}_n - \boldsymbol{\Sigma}$. Define the following:

$$\tilde{\mathbf{p}} = \mathbf{U_2}^\top \mathbf{P} \theta^*$$

where the columns of $\mathbf{U}_2 \in \mathbb{R}^{d \times d - 1}$ form an orthonormal basis of $\theta^{*\top}$

We have the following lemma, (Thm 8.5 in [1]), which we do not prove in lecture, but the proof boils down to linear algebra calculations.

¹Note [1] uses ξ rather than ϵ

Theorem 3 (Theorem 8.5 in [1]). If $\|\mathbf{P}\|_2 < \frac{\nu}{2}$ then

$$\|\hat{\theta} - \theta^*\|_2 \le \frac{2\|\mathbf{\tilde{p}}\|_2}{\nu - 2\|\mathbf{P}\|_2}$$

3 Proof of Theorem 2

Now we present the proof of Theorem 2 by applying Theorem 3. To do this, we bound the norm of \mathbf{P} .

Proof. The idea of the proof is to divide \mathbf{P} into three contributions.

$$\mathbf{P} = \mathbf{\Sigma}_n - \mathbf{\Sigma}$$

= $\nu \left(\frac{1}{n} \sum_{i=1}^n \epsilon_i^2 - 1 \right) \theta^* \theta^{*\top} + \sqrt{\nu} \left(\mathbf{\bar{w}} \theta^{*\top} + \theta^* \mathbf{\bar{w}}^\top \right) + \left(\frac{1}{n} \sum_{i=1}^n \mathbf{w}_i \mathbf{w}_i^\top - I_d \right)$

where $\bar{\mathbf{w}} = \frac{1}{n} \sum_{i=1}^{n} \epsilon_i \mathbf{w}_i$. Intuitively, the terms break up in the following way. The first term is the main contributions from θ^* , the middle term deals with both the contributions from $\bar{\mathbf{w}}$ and θ^* . The last term deals with the expectation of the values of \mathbf{w}_i . Call the first term \mathbf{P}_1 , the second term \mathbf{P}_2 , the third term \mathbf{P}_3 . By the triangle inequality, we have that:

$$\|\mathbf{P}\|_2 < \|\mathbf{P}_1\|_2 + \|\mathbf{P}_2\|_2 + \|\mathbf{P}_3\|_2$$

We go through these individually. Starting with \mathbf{P}_3 , previously we showed that with probability $1 - 2e^{-u}$ that:

$$\|\mathbf{P}_3\| \le C(\sqrt{\frac{d+u}{n}} + \frac{d+u}{n})$$

So we take u = cd. Use the fact that $\|\mathbf{W}^{(i)}\|_2 \leq 1$ to get that:

$$\|\mathbf{P}_3\| \simeq c' \sqrt{\frac{d}{n}}$$

Turning to \mathbf{P}_1 , we have that the expectation of ϵ_i^2 is 1 because we took it be mean zero, variance 1 and subgaussian. We can consider each piece of \mathbf{P}_1 separately as:

$$\|\mathbf{P}_1\|_2 \le \nu |\frac{1}{n} \sum_{i=1}^n \epsilon_i^2 - 1| \|\theta^* \theta^{*\top}\|_2$$

Note that $\|\theta^*\theta^{*\top}\|_2 = 1$. We also have the following lemma (Lemma 2.7.7 in [2]):

Lemma 4. If X, Y are sub-gaussian, then:

$$||XY||_{\psi_1} \le ||X||_{\psi_2} ||Y||_{\psi_2}$$

In particular, $\|\epsilon_i^2\|_{\psi_1} \leq 1$.

Let $z = |\frac{1}{n} \sum_{i=1}^{n} \epsilon_i^2 - 1|$. By Bernstein's inequality and the fact that the expectation of ϵ^2 is 1, we prove using Cor 2.8.3 in [2] that:

$$\mathbb{P}(z \ge t) \le 2\exp(-c\min(t^2, t)n)$$

where n is the number of samples. Take $t = c\sqrt{\frac{d}{n}}$. Letting this c be as small as we'd like, then we can get the bound:

$$\|\mathbf{P}_1\|_2 \le \frac{\nu}{8}$$

Using Lemma 3 above, we can also get that:

$$\|\mathbf{P}_2\|_2 \le \sqrt{\nu} \cdot 2\|\bar{\mathbf{w}}\theta^{*\top}\|_2 \le 2\sqrt{\nu}\|\bar{\mathbf{w}}\|_2$$

Now we get the following series of claims.

Claim 5. With probability $1 - ce^{-c'd}$, we have that:

$$\|\bar{\mathbf{w}}\|_2 \le c'' \sqrt{\frac{d}{n}}$$

Suppose Claim 4 is true, then we have:

Claim 6. With probability $1 - ce^{-c'd}$, we have that:

$$\|\mathbf{P}_2\|_2 \le c'' \sqrt{\nu} \sqrt{\frac{d}{n}}$$

Suppose both Claim 4 and 5 are true, then we have:

Claim 7. With probability $1 - ce^{-c'd}$

$$\|\mathbf{P}\|_2 < \frac{\nu}{4}$$

The key to this claim is the assumption that $\sqrt{\frac{\nu+1}{\nu^2}}\sqrt{\frac{d}{n}} \leq C_0$. By letting C_0 be small enough, then we can get the above claim by combining the remaining inequalities. With this claim, we're one step closer to applying Theorem 2 (Thm 8.5 in [1]) to finish the proof of Cor. 8.7.

References

- [1] Wainwright, M. J. (2019). High-Dimensional Statistics: A Non-Asymptotic Viewpoint. CUP.
- [2] Roman Vershynin, *High-dimensional probability: An introduction with applications in data science*, Cambridge University Press, 2018.