MATH888: High-dimensional probability and statistics	Fall 2021
Lecture 23 — October 29, 2021	
Sebastien Roch, UW-Madison	Scribe: Yuchen Li

1 Overview

In the last lecture, we discussed the proof of Theorem 2 from lecture 21. In this lecture, we finish this proof. This lecture is based on Section 8.2 from Wainwright [1].

2 Review of PCA in Spiked Covariance Model

Let $\mathbf{W} \in \mathbb{R}^d$ be an isotropic, subgaussian random vector with mean zero, and let ϵ be an independent real-valued subgaussian random variable with mean zero and variance 1. The **spiked covariance model** is given by the random vector \mathbf{X} with distribution

$$\mathbf{X} \sim \mathbf{W} + \sqrt{\nu} \epsilon \theta^*$$

where $\nu > 0$, $\theta^* \in \mathbb{S}^{d-1}$ are fixed. Since **X** is mean-zero and isotropic, the covariance is

$$\boldsymbol{\Sigma} = I_d + \nu \theta^* {\theta^*}^\top$$

where I_d is the $d \times d$ identity matrix. The maximal eigenvalue is $1 + \nu$ with eigenvector θ^* . Now we restate the main theorem we proved partially in last lecture,

Theorem 1 (Cor 8.7 in [1]). Assume n > d. Given n iid samples from the spiked covariance model with (*), and assuming that $\sqrt{\frac{\nu+1}{\nu^2}}\sqrt{\frac{d}{n}} \leq C_0$, it holds that if $\hat{\theta}$ is the maximal eigenvector of $\hat{\Sigma}_n$, then with probability $1 - C_2 \exp\{-C_3d\}$, we have

$$\left\|\hat{\theta} - \theta^*\right\|_2 \le C_1 \sqrt{\frac{\nu+1}{\nu^2}} \sqrt{\frac{d}{n}}$$

To prove the theorem, we also need the following lemma,

Lemma 2 (Theorem 8.5 in [1]). Consider $\mathbf{P} = \hat{\boldsymbol{\Sigma}} - \boldsymbol{\Sigma}$ and $\tilde{\mathbf{P}} = U_2^{\top} \mathbf{P} \theta^*$ where the columns of U_2^{\top} forms an orthonormal basis of span $\{\theta^*\}^{\perp}$. If $\|\mathbf{P}\|_2 < \frac{\nu}{2}$ then

$$\left\|\hat{\theta} - \theta^*\right\|_2 \le \frac{2\left\|\tilde{\mathbf{P}}\right\|_2}{\nu - 2\left\|\mathbf{P}\right\|_2}$$

3 Proof of Theorem 1

We continue the proof of Theorem 1 by using Lemma 2 in this section. Last time, we decomposed P as

$$\mathbf{P} = \mathbf{P}_1 + \mathbf{P}_2 + \mathbf{P}_3$$

we claimed with probability $1 - C_4 exp\{-C_5d\}$, we have

$$\|\mathbf{P}_1\|_2 \le \frac{\nu}{8}, \quad \|\mathbf{P}_2\|_2 \le C_6 \sqrt{\nu} \sqrt{\frac{d}{n}}, \quad \|\mathbf{P}_3\|_2 \le C_7 \sqrt{\frac{d}{n}}$$

thus we have

$$\|\mathbf{P}\|_2 \le \frac{\nu}{4}$$

Now we begin with the following claim,

Claim 3. Let $\bar{W} = \frac{1}{n} \sum_{i=1}^{n} \epsilon_i W^{(i)}$, with probability $1 - C_8 \exp\{-C_9 d\}$ we have

$$\left\|\bar{W}\right\|_2 \le C_{10} \sqrt{\frac{d}{\nu}}$$

We first review the concept of ϵ net before we prove the Claim 3.

3.1 Review of ε -net

Recall $N \subseteq T$ is ε -net of $K \subseteq T$ if for $\forall x \in K, \exists x_0 \in N$ so that $||x - x_0|| \leq \varepsilon$. Also, $N(K, \varepsilon)$ denotes the smallest size of an ε -net of the set K.

Recall the Lemma 4 from lecture 19, we showed the covering number of the unit Euclidean ball B_2^d satisfy the following for any $\varepsilon > 0$:

$$\mathcal{N}\left(B_2^d,\varepsilon\right) \le \left(\frac{2}{\varepsilon}+1\right)^d.$$
 (1)

Take

3.2 Proof of Claim 3

Now we prove Claim 3 utilizing ε -net,

Proof. Note

$$\left\|\bar{W}\right\|_2 = \sup_{u\in B_2^d} \langle u,\bar{W}\rangle$$

Let N be the $\frac{1}{2}$ -net of B_2^d , $\forall u \in B_2^d$, $\exists z \in N$ such that

$$x = u - z \quad with \quad \|x\|_2 \le \frac{1}{2}$$

also by taking $\varepsilon = \frac{1}{2}$ in inequality 1, we have

$$\mathcal{N}\left(B_2^d, \frac{1}{2}\right) \le 5^d$$

then

$$\begin{split} \left\| \bar{W} \right\|_{2} &= \sup_{u \in B_{2}^{d}} \langle u, \bar{W} \rangle \\ &\leq \sup_{z \in N} \langle z, \bar{W} \rangle + \sup_{x \in \frac{1}{2} B_{2}^{d}} \langle x, \bar{W} \rangle \\ &= \sup_{z \in N} \langle z, \bar{W} \rangle + \frac{1}{2} \left\| \bar{W} \right\|_{2} \end{split}$$

so we have

$$\left\|W\right\|_2 \le 2 \sup_{z \in N} \langle z, W \rangle$$

Now we let $t = C_{12}\sqrt{\frac{d}{\nu}}$, then the probability

$$\begin{split} \mathbb{P}\left(2\sup_{z\in N}\langle z,\bar{W}\rangle \geq t\right) &\leq \sum_{z\in N} \mathbb{P}(2\langle z,\bar{W}\rangle \geq t) \\ &= \sum_{z\in N} \mathbb{P}\left(\frac{2}{n}\sum_{i=1}^{n}\epsilon_i \langle z,\bar{W}^{(i)}\rangle \geq t\right) \\ &\leq 5^d \exp(-C_{11}C_{12}^2d) \end{split}$$

note ϵ_i and $\langle z, \overline{W}^{(i)} \rangle$ are sub-Gaussian so the product of them is sub-exponential, we get the last inequality by Bernstein inequality. This finishes the proof.

Now with the bound of $\|\bar{W}\|_2$, we could find the bound of \tilde{P} and \mathbf{P}_2 . This all together could prove Theorem 1 by Lemma 2.

References

- [1] Wainwright, M. J. (2019). High-Dimensional Statistics: A Non-Asymptotic Viewpoint. CUP.
- [2] Roman Vershynin, *High-dimensional probability: An introduction with applications in data science*, Cambridge University Press, 2018.