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1 Overview

In the last lecture we went through some standard results in information theory. Today, we start a
new topic which focuses on providing information theoretic lower bounds on parameter estimation
problems. In this lecture, we will give a lower bound proof for mean estimation of Gaussian
distribution. This lower bound is tight and is achieved by the maximum likelihood estimator. The
analysis follows the proof style in chapter 15 of Wainwright’s book [1].

2 Parameter estimation problem

Consider the problem of parameter estimation under the following setup where we have

1. P – a family of distributions.

2. Θ – the parameter space of the family, every P ∈ P is parameterized by a θ ∈ Θ.

3. ρ : Θ×Θ→ R+ – a semi-metric loss function.

4. Φ : R→ R – a positive increasing function.

Given n i.i.d samples from a fixed distribution in the family, we are interested in estimating a
parameter of that distribution. For any estimator θ̂ : {Xi}i∈[n] → Θ, we define its risk with respect
to the true parameter θ(P) under the loss function Φ ◦ ρ as follows:

R(θ̂, θ(P),Φ ◦ ρ) := sup
P∈P

EPn
[
Φ(ρ(θ̂, θ(P)))

]
(1)

The minimax risk of the estimation problem is then given as :

M(θ(P),Φ ◦ ρ) = inf
θ̂
R(θ̂, θ(P),Φ ◦ ρ) (2)

= inf
θ̂

sup
P∈P

EPn
[
Φ(ρ(θ̂, θ(P)))

]
(3)

2.1 Mean estimation of the Gaussian distribution

As our first example, consider the problem of estimating mean of the Gaussian distribution with a
fixed variance σ2. The distribution family,

P := {N (θ, σ2) : θ ∈ R}
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is parameterized by the parameter θ ∈ Θ := R. Since, we are interested in estimating the mean of
the distribution, the parameter of interest is the mean itself which we denote by θ(Pµ) = µ.

Given n i.i.d samples drawn from a distribution Pθ, the maximum likelihood estimator(MLE)
of the mean is given by :

θ̂({Xi}i∈[n]) =
1

n

n∑
i=1

Xi

Suppose we are interested in the mean squared error of the estimator with respect to the true
parameter. This can be captured by considering the semi-metric loss ρ(θ, θ′) = |θ − θ′| and loss
transformation function Φ(z) = z2. The expected loss of the estimator is given as :

EPnθ

[
Φ ◦ ρ(θ̂, θ)

]
= EPnθ

∣∣∣∣∣ 1n
n∑
i=1

Xi − θ

∣∣∣∣∣
2
 (4)

= V ar(
1

n

n∑
i=1

Xi) =
σ2

n
(5)

and the worst case error of the MLE estimator is supθ∈Θ EPnθ

[
Φ ◦ ρ(θ̂, θ)

]
= σ2

n .

Next, the question arises whether MLE estimator is optimal with respect to the minimax risk
defined above in (3) or can we do better than σ2

n in the worst case? We will show that MLE is an
optimal estimator for this problem in the next section.

3 MLE is optimal for Gaussian mean estimation

A standard recipe for providing a lower bound for a parameter estimation problem is to relate it
to a hypothesis testing problem and then show that for a fixed sample size one can do no better in
identifying the correct hypothesis. We outline this method next.

Let {θ(1), θ(2), · · · , θ(M)} ⊆ Θ be a 2δ separated set i.e. ∀i 6= j ∈ [M ]2, ρ(θ(i), θ(j)) > δ. For now we
assume that such a set is given but one has to always construct a problem specific set. Note that
θ(i) = θ(Pθ(i)). We define a sampling procedure as follows:

1. Pick J ∼ Unif(M).

2. Sample Z ∼ Pθ(J) , Z is n i.i.d sample {Xi}i∈[n] s.t. Z ∼ Pn
θ(J)

.

Note that Z comes from a mixture distribution Q̄ = 1
M

∑M
i=1 Pθ(J) and we denote the joint distri-

bution as Q. Let ψ : Z → [M ] denote an M -ary testing function. Given a 2δ separated set, we
have the following theorem that relate the minimax risk of the parameter estimation problem to
the hypothesis testing problem.

Theorem 1 (From estimation to a testing problem). For any semi-metric loss function ρ, increas-
ing function Φ and a choice of 2δ-separated set Z, the minimax risk of the parameter estimation
problem is lower bounded as

M(θ(P); Φ ◦ ρ) ≥ Φ(δ) inf
ψ
Q[ψ(Z) 6= J ] (6)

where infinimum is taken over all measurable testing functions.
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Proof. Refer to Proposition 15.1 in [1] for a detailed proof. We will use this theorem to give an
lower bound proof for the mean estimation problem.

Theorem 2 (Minimax lower bound for Gaussian mean estimation). For Gaussian mean estimation
problem defined above, the minimax risk satisfies

M(θ(P); Φ ◦ ρ) ≥ σ2

8n

Proof. Consider two hypothesis defined by θ(1) = 0, θ(2) = σ√
n

and δ = 1
2 ·

σ√
n

. Note that θ(1), θ(2)

are 2δ separated. For any testing function ψ, we have,

Q (ψ(Z) 6= J) =
1

2

(
Pn
θ(1)

[ψ(Z) 6= 1] + Pn
θ(2)

[ψ(Z) 6= 2]
)

(7)

=
1

2

(
1− ||Pn

θ(1)
− Pn

θ(2)
||TV

)
(Prop. 4.4 in Rigollet’s notes) (8)

≥ 1

2

(
1−

√
KL
(
Pn
θ(1)

,Pn
θ(2)

))
(by Pinskers inequality) (9)

=
1

2

(
1−

√
n ·KL (Pθ(1) ,Pθ(2))

)
(KL factorizes for product distributions)

(10)

=
1

2

(
1−

√
n · σ

2/n

2σ2

)
≥ 1

4
(KL(N (θ1, σ

2),N (θ2, σ
2)) =

||θ1 − θ2||2

2σ2
)

(11)

Thus, infψ Q (ψ(Z) 6= J) ≥ 1
4 . Plugging it back into 6, we get that for Gaussian mean estimation

problem,

M(θ(P); Φ ◦ ρ) ≥ Φ(δ) inf
ψ
Q[ψ(Z) 6= J ] (12)

≥ σ2

2n
· 1

4
(13)

which is of the same order as achieved by MLE estimator and hence MLE is an optimal minimax
estimator for estimating mean of the Gaussian distribution.
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