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1 Overview

Last time we reviewed basic concepts in statistics and mostly focused on parametric models. This
time we review some important facts in probability theory and then consider a more general context
for comparing estimators.

2 Important Probability Facts

The slides for this section (https://people.math.wisc.edu/~roch/hdps/roch-hdps-slides3.
pdf) provides a quick review of the Markov’s inequality and the Chebyshev’s inequality for bounding
tails of distributions, monotonicity of £P norms, the Schwarz inequality and modes of convergence.
These materials are based on Williams [1], but the results can be found in any graduate-level
probability textbook, e.g., https://people.math.wisc.edu/~roch/grad-prob/.

3 Basic Framework

Suppose we have a family of distributions, P, over a measure space (X,B), where X is the
sample space and B is the associated o-field. For example, P can be the family of all Gaussian
distributions N (u1, 02).

We are interested in estimating the parameter. In general, a parameter 6 is a function from the
family of distributions P to ©, where (0, A) is the parameter space and A is the associated o-field.
f can just be a parameter of a parametric family, or the mean and the covariance matrix for a more
general collection of nonparametric distributions. For example, a parameter of the collections of
Gaussian distributions is u, the mean of the distribution.

Typically, the data we have are n independent and identically distributed (iid) samples X1, ..., X, ~
P € P, where P is an unknown distribution from the family P.

The point estimator 6, is a measurable function from the space of n data points X™ to the
parameter space O.

A few remarks:

1. The sample space X is typically some measurable subset of RP. Continuous variables may be
associated with Borel sets, while discrete variables may be associated with discrete topology.

2. O(P) may not uniquely determines the distribution P. In the Gaussian example, 0 = p,
the mean of the distribution, does not uniquely determine the distribution P; 8 = (u,0?),
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https://people.math.wisc.edu/~roch/grad-prob/

the mean and the variance of the distribution, uniquely determines P. In general, for some
nonparametric family of distributions we may only be interested in the mean, which does not
uniquely determines the distribution.

3. P is the distribution of one sample. Let P be the joint distribution of X1, ..., X, with cor-
responding expectation operator E™), Typically, we will have a sequence of point estimators
0,, for each n > 1.

4 Loss Function

To compare estimators, we introduce a loss p : © x © — R, which measures how close én is to
O(P). Typically, p is a semi-metric: p is symmetric, i.e., p(a,b) = p(b, a), and p satisfies the triangle
inequality.

Sometimes it is also useful to consider a non-negative and non-decreasing function ® and look at
the composition ® o p. For example, sometimes we want to work with the square of a metric, which
is not necessarily a metric.

Later we will choose the loss function and compare the risks of two estimators.
Definition 1. The risk is the expected loss
E™[@(p(0,,0(P)))],
where the expectation is taken over n iid samples from a fized distribution P.
The risk measures the expectation of how close the point estimator and the parameter are in the
sense of loss. However, the risk depends on P and is hence hard to compare. In general, we want

to define notions of optimality. One such notion is the minimax risk, a major quantity of interest
this semester.

Definition 2. The minimax risk is

Mo(8,® 0 p) = inf sup E™[® o p(6,, 6(P))],
6, PeP

where the infimum is over all point estimators 0,,.

A minimax estimator, an estimator that achieves the minimax risk, is the best estimator in the
sense that it minimizes the worst-case risk over all distributions in the family.

5 Mean Squared Error

Suppose that X C R? and ©® C R". The bias,
bias(6y,0) = E™ (8, — 0(P)),

measures how the estimator is centered around the true value. The bias itself does not tell us
that much because even if the bias is zero, which implies that 6,, is centered at 6(P), 6, can still
have a large variance so that it is highly likely to be far from (). Therefore, the variance of the

~

estimator, Var(6,,), is also relevant. The mean squared error combines the two.



Definition 3. The mean squared error (MSE) is
MSE(0,,,0) = E™[[16, — 6(B)|],

where || - || is the Euclidean distance or the L* norm.

The mean squared error is a particular notion of risk and very natural. The following lemma relates
mean squared error to the bias and the variance.

Lemma 4 (Bias-Variance Decomposition).

T
MSE(0,,,0) = |[bias(n, 0)[|* + Y _ Var™ (0,,,),

=1

where énz is the ith component of én, and Var™ is the variance with respect to P".

According to the lemma, if the mean squared error is small, then both the bias and the variance
are small.
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