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1 Overview

In the last lecture, we finished the proof of Proposition 15.1 in Wainwright’s book [1]. In this
lecture, we will give a second example in low dimension.

2 From Estimation to Testing: A Second Example

2.1 Reminder

Recall that the minimax risk of the estimation problem is:

M(θ(P); Φ ◦ ρ) = inf
θ̂

sup
P∈P

EP

[
Φ(ρ(θ̂, θ(P)))

]
. (1)

Hypothesis testing problem setting:

1. In the space θ(P), {θ1, ..., θM} is a 2δ-separated set.

2. For each θj , choose distribution Pθj ∈ P such that θ(Pθj ) = θj .

3. Generate Z by the following procedure:

Pick J uniformly at random in the index set [M ] := {1, ...,M}.
Given J = j, sample Z ∼ Pθj .

Let Q be the joint distribution of (J, Z).

Assuming this setting, the main result is:

Theorem 1 (From estimation to a testing problem). For any increasing function Φ and choice of
2δ-separated set, the minimax risk of the estimation problem is lower bounded as

M(θ(P); Φ ◦ ρ) ≥ Φ(δ) inf
ψ

Q[ψ(Z) 6= J ], (2)

where the infinimum ranges over all testing functions from the range of Z to [M ].

2.2 Corollary for M=2

Corollary 2 (Special case when M=2).

M ≥ Φ(δ)

2
(1− ‖Pθ1 − Pθ2‖TV ). (3)
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Proof. Recall that

‖Pθ1 − Pθ2‖TV = sup
A
|Pθ1(A)− Pθ2(A)|.

Note that

inf
ψ

Q[ψ(Z) 6= J ] = 1− sup
ψ

Q[ψ(Z) = J ].

Also, by the law of total probability, we have

sup
ψ

Q[ψ(Z) = J ] = sup
ψ

{
1

2
Pθ1 [ψ(Z) = 1] +

1

2
Pθ2 [ψ(Z) = 2]

}
. (4)

Defining A = {ψ(Z) = 1} we see that

(4) =
1

2

(
sup
ψ
{Pθ1 [ψ(Z) = 1]− Pθ2 [ψ(Z) = 1]}

)
+

1

2

=
1

2
sup
A
|Pθ1(A)− Pθ2(A)|+ 1

2
.

Replacing above gives the claim.

2.3 Example: Uniform Location Family

Here we consider the uniform location family (Example 15.5 in Wainwright’s book [1]). The setup
is the following:

1. Uθ is the uniform distribution over [θ, θ + 1].

2. Unθ is the distribution of n i.i.d. samples from Uθ.

3. Goal is to lower bound the minimax risk (in the MSE case)

inf
θ̂

sup
θ∈R

Eθ[(θ̂ − θ)2]),

where θ̂ is a function of (X1, . . . , Xn) ∼ Unθ .

4. First we try an estimator based on the sample mean:

X̄n =
1

n
Σn
i=1Xi,

Defining

θ̂0 = X̄n −
1

2
,
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we have

EX̄n = EX1 = θ +
1

2
,

and

Eθ[(θ̂0 − θ)2] = Eθ[(X̄n −
1

2
− θ)2] = Eθ[(X̄n − (

1

2
+ θ))2]

= Varθ(X̄n) =
1

n2
nVarθ(X1) =

1

n
Var0(X1),

where we used translation invariance in the last equality. Thus, this estimator based on the
sample mean estimator risk rate of the order of 1

n .

5. By Corollary 2,

M ≥ Φ(δ)

2
(1− ‖Unθ1 − Unθ2‖TV ),

where |θ1 − θ2| = 2δ.

6. Using inequalities we previously discussed,

‖Unθ1 − Unθ2‖TV ≤ H2(Unθ1 ,U
n
θ2) (5)

≤ nH2(Uθ1 ,Uθ2)

= n

∫ ∞
−∞

(√
fθ1(x)−

√
fθ1(x)

)2
dx

= min(2n, 2n|θ1 − θ2|), (6)

where H is Hellinger distance (equation 15.9 in [1]) and fθi(x) is density function under Uθi .
Eq. (5) is based on the conjunction with Lemma 15.3 in [1]. Taking δ = 1

8n ,

(6) = 2n× 2
1

8n
=

1

2

⇒1− ‖Unθ1 − Unθ2‖TV ≥ 1− 1√
2

⇒M ≥
1− 1√

2

128

1

n2
, (7)

where (7) is based on Corollary 2.

2.4 A Better Estimator

Now consider estimator Rn := min{X1, . . . , Xn}. We will show that Rn achieves better risk. It can
be proved that (the second claim follows from the argument below in fact)

EθRn > θ,

Rn −→
p
θ as n −→∞.
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W.l.o.g. set θ = 0, then

E[R2
n] =

∫ 1

0
P(R2

n ≥ t)dt, ,

where

P(R2
n ≥ t) = P(Rn ≥

√
t) = P(X1, . . . , Xn ≥

√
t)

= Πn
i=1P (Xi ≥

√
t) = P (X1 ≥

√
t)n = (1−

√
t)n.

Define tj = j2

n2 , j = 0, . . . , n. On the interval [tj , tj+1),

(1−
√
t)n ≤ e−

√
tn ≤ e−

√
tjn = e−j . (8)

Thus,

(8) =

∫ 1

0
(1−

√
t)ndt (9)

≤
∞∑
j=0

e−j
(

(j + 1)2

n2
− j2

n2

)
(10)

=
1

n2

∞∑
j=0

e−j(2j + 1) .
1

n2
. (11)

We can see that Rn achieves the better risk rate of order 1
n2 than the estimator based on the sample

mean estimator whose risk rate is of order 1
n . By (7), we know that Rn is an optimal estimator up

to a constant factor.
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