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1 Overview

In the last lecture, we finished the proof of Proposition 15.1 in Wainwright’s book [1]. In this
lecture, we will give a second example in low dimension.

2 From Estimation to Testing: A Second Example

2.1 Reminder

Recall that the minimax risk of the estimation problem is:

M(O(P); @ o p) Zi%f;telgEm ®(p(0,0(P)))] - (1)

Hypothesis testing problem setting:

1. In the space 6(P), {0, ...,0M} is a 25-separated set.
2. For each 67, choose distribution Pyp; € P such that 0(Py;) = 67,

3. Generate Z by the following procedure:
Pick J uniformly at random in the index set [M] := {1, ..., M }.
Given J = j, sample Z ~ Py;.

Let Q be the joint distribution of (J, Z).

Assuming this setting, the main result is:

Theorem 1 (From estimation to a testing problem). For any increasing function ® and choice of
2§-separated set, the minimax risk of the estimation problem is lower bounded as

M(O(P); © o p) = ©(4) ingh/J(Z) # J; (2)

where the infinimum ranges over all testing functions from the range of Z to [M].

2.2 Corollary for M=2

Corollary 2 (Special case when M=2).
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Proof. Recall that

[Pgr — Pg2|l7v = Sup [Pg1(A) — Pg2(A)].

Note that

igf@hb(z) #J]=1- Sl;pQ[w(Z) =J].

Also, by the law of total probability, we have
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sup Q(Z) = 1) = sup { FEorlv(2) = 1) + GPelu(2) =2} (@)

Defining A = {¢)(Z) = 1} we see that

(4) = % <sip{IP91[z/J(Z) =1] = Pp[y(Z) = 1”) + %
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Replacing above gives the claim. O

2.3 Example: Uniform Location Family

Here we consider the uniform location family (Example 15.5 in Wainwright’s book [1]). The setup
is the following:

1. Up is the uniform distribution over [0, 6 + 1].
2. Uy is the distribution of n i.i.d. samples from Uy.

3. Goal is to lower bound the minimax risk (in the MSE case)

inf supEg[(é — 9)2]),
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where 0 is a function of (X1,...,X,) ~ Uy.

4. First we try an estimator based on the sample mean:

1
X, = ~P, X,
n
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we have

and
Eo[(Bo — 6] = Eol(Xn — 5 — 6] = Egl(Xs — (5 +6))”
= Varg(Xn) = g nVarg(X1) = - Varo(Xa),

where we used translation invariance in the last equality. Thus, this estimator based on the
sample mean estimator risk rate of the order of %

5. By Corollary 2,

®(9)

m > 21— Up - Uallr),

where [0 — 62| = 20.
6. Using inequalities we previously discussed,

U — Ugallrv < H? (U, Upe) (5)
< nH?(Upr, Ug2)

o [~ (Via@) - Vio®) da

= min(2n, 2n|0" — 6?)), (6)

where H is Hellinger distance (equation 15.9 in [1]) and fyi(x) is density function under Ug;.
Eq. (5) is based on the conjunction with Lemma 15.3 in [1]. Taking § = &
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where (7) is based on Corollary 2.
2.4 A Better Estimator
Now consider estimator R, := min{ X7, ..., X,,}. We will show that R,, achieves better risk. It can

be proved that (the second claim follows from the argument below in fact)

Ean>9,
R, — 0 as n — oo.
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W.lo.g. set § = 0, then

1
E[R;] = / P(R}, > t)dt,,
0

where
P(R%2 >t) =P(R, > Vt) =P(X1,..., X, > V1)
L, P(X = V) = P(X1 2 VB = (1 VA"
Define t; = n2 ,j=0,...,n. On the interval [t;,t;41),
(1—VEr <eVin < e Vin = ¢,
Thus,

(1 —Vt)"dt
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We can see that R,, achieves the better risk rate of order > than the estimator based on the sample
mean estimator whose risk rate is of order =. By (7), we know that R, is an optimal estimator up

to a constant factor.
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