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1 Overview

In previous lectures we have introduced the minimax risk, which is defined as

M(θ(P); Φ ◦ ρ) = inf
θ̂

sup
P∈P

EP[Φ(ρ(θ̂, θ(P)]. (1)

Recall the hypothesis testing problem setting:

• θ1, . . . , θM are 2δ-separated under ρ over the space Θ(P).

• Pick J uniformly at random on [M ]. Given J = j, pick Z ∼ Pθj where θ(Pθj ) = θj .

• QZ,J is the joint distribution of (Z, J).

We have shown that the minimax risk is lower bounded as

M ≥ Φ(δ) inf
ψ

QZ,J [ψ(Z) 6= J ] (2)

where Φ(δ) is an increasing function. We have also shown the special case when M = 2, where

M ≥ Φ(δ) · 1

2
{1− ‖Pθ1 − Pθ2‖TV }. (3)

In this lecture we will examine a more general case when M > 2 and derive a lower bound of the
minimax risk using Fano’s method in an information theory perspective. We will show the theorem
and an example today and give the proof in the next lecture.

2 Fano’s method

The mutual information between Z and J is defined as:

I(Z, J) = KL(QZ,J‖QZQJ) (4)

where QZ ,QJ are marginals of Z and J respectively.

The mutual information describes the amount of information gained on Z, if we only observe J .
The higher the mutual information, the more knowledge one gain regarding the unobserved variable
using the observed variable.
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Theorem (Proposition 15.12 in [1]). Under the setting we describe in the beginning, we have

M ≥ Φ(δ) ·
{

1− I(Z, J) + 1

log2M

}
. (5)

We will use the following lemma to reduce the problem into two different distributions,

Lemma (15.34 in [1]). Under the same setting,

I(Z, J) ≤ 1

M2

M∑
i,j

KL(Pθi‖Pθj ) (6)

We are going to give the proof of the theorem and the lemma next time.

3 Example: Linear Regression (15.14 in [1])

3.1 Problem setting

• we have an unknown parameter θ∗ ∈ RP

• given n observations yi = f(xi) + εi where f(x) = θ∗Tx

• Goal: given (xi, yi), we would want to estimate θ∗.

We use the Mean squared error (MSE) to measure our estimator θ̂
T

, MSE is defined as

MSE(f̂n) =
1

n

n∑
i=1

(f̂n(xi)− f(xi))
2 (7)

where f̂n(x) = θ̂
T
x. We would like to represent it in matrix form. Let X has the xi’s as rows,

MSE(f̂n) =
1

n
‖Xθ̂ − Xθ∗‖2. (8)

The least square estimator is

θ̂LS ∈ arg min
θ
‖Y − Xθ∗‖2 (9)

where Y = (y1, . . . , yn).

Note that θ̂LS = XTY , we have shown that with probability 1− δ,

MSE(Xθ̂LS) .
δ2(rank(X) + log(1/δ))

n
(10)

where ε = (ε1, . . . , εn) has ‖ε‖ψ2 ≤ δ.
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3.2 Lower bound

Assume ε ∼ N (θ, σ2In), ρ(θ̂, θ∗) = 1√
n
‖Xθ̂ − Xθ∗‖2, and Φ(δ) = δ2. We want to find θ1, . . . , θM

such that

1√
n
‖Xθi − Xθj‖2 > 2δ ∀i 6= j (∗) (11)

We want to find the largest M since in the lemma we have shown that the upper bound of the
mutual information is inversely proportional to M . The larger M is, the tighter the upper bound
of the mutual information is.

Let γ1, . . . , γM ∈ range(X) such that

‖γi − γj‖2 > 2δ
√
n ∀i 6= j (∗∗) (12)

then there exists θ1, . . . , θM such that γi = Xγi and (*) is satisfied.

Then let Pθj = N (Xθj , σ2In), we need a bound of the KL divergence

KL(Pθi‖Pθj ) =
1

2σ2
‖Xθi − Xθj‖22. (13)

If we can prove ∀i 6= j, KL(Pθi‖Pθj ) ≤ some upper bound ∆. Then I(Z, J) ≤ ∆. This will be
discussed more in the next lecture.
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