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1 Overview

Recall in the previous lectures where we defined the minimax risk:

M(θ(P); Φ ◦ ρ) = inf
θ̂
sup
P∈P

EP[Φ(ρ(θ̂, θ(P)] (1)

We showed the special case where M = 2 where the minimax risk can be bounded as

M ≥ Φ(δ) ∗ 1

2
{1− ||Pθ1 − P2

θ||TV ) (2)

In this lecture we will examine the case where M > 2 and develop and information theory based
approach to bounding the mini-max risk using Fano’s method. The proof of this method will be
discussed in the upcoming lecture, with examples and results being shown today.

2 Mutual Information and the Minimax Risk

The mutual information between two variables is an information theory technique which helps
numerically describe the relationship between two random variables. If one were to observe variable
A, the mutual information would describe the amount of information gained regarding variable B
with this single observation of variable A. The higher the mutual information, the more knowledge
one gains regarding the non-observed variable by observing a particular variable. It follows that
zero mutual information indicates independent random variables.

2.1 Mutual Information and KL Divergence

The mutual information can be described in terms of the Kullback Leibler divergence:

I(Z, J) = KL(QZ,J ||QZQJ) (3)

where QZ,J represent the joint distribution and QZ and QJ represent the marginal distributions
respectively.

Theorem 1. Proposition 15.12 in W [1]

M ≥ Φ(δ)[1− I(Z, J) + 1

log2(M)
] (4)
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It follows that the lower the mutual information (i.e. less information J reveals about Z, the larger

[1− I(Z,J)+1
log2(M) ] becomes, thus increasing the lower bound for the minimax risk.

Lemma 2. 15.34 in W [1]

I(Z; J) ≤ 1

M2

M∑
i,j

KL(Pθi ||Pθj ) (5)

The above lemma is useful to reduce the problem to two different distributions, which can be
plugged into equation 4 to get a more descriptive bound. The proof of this theorem and lemma
will be discussed in the next lecture.

3 Linear Regression Example

Recall the linear regression problem, where we have an unknown parameter θ∗ ∈ RP of which we
wish to estimate. We are given n observations of yi = f(xi)+ ϵi where ϵ is some form of noise, and
f represents the true function, i.e. f(x) = θ∗Tx

The Mean squared error (MSE) is defined as:

MSE(f̂n) =
1

n

n∑
i=1

(f̂n(xi)− f(xi))
2 (6)

this can be simplified in terms of the matrix form of x

where the rows of X contain xi

MSE(f̂n) =
1

n
||Xθ̂ − Xθ∗||2 (7)

and

θ̂LS ∈ argMinθ̂||y − Xθ||2 (8)

where y = (y1, ....yn).

Recall we previously showed w.p. 1− δ

MSE(Xθ̂LS) ≤ σ2

n
(rank(X) + log(1/δ)) (9)
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when ϵ has sub-guassian norm ||ϵ||ψ2 ≤ σ

Suppose our ϵi are generated from a normal distribution N(0, σ2In)

We wish to find as many possible θ1...θm such that:

1√
n
||Xθi − Xθj ||2 > 2δ ∀i ̸= j (10)

We wish to find the largest M number of θ since earlier we showed that the upper bound on the
mutual information I(Z; J) is inversely proportional to M (see Lemma 2). Thus the larger M is, the
tighter upper bound we can get on the mutual information. since X is fixed, the above expression
is really a combination of the columns of X, and thus we can obtain the list of θ’s by finding all
vectors γi in the range of X that fit the criteria:

||γi − γj ||2 ≥ 2δ
√
n ∀i ̸= j (11)

then there must exist a set of θi such that:

γi = Xθi (12)

Note that all possible γ values lie within the range of X, and we wish the find the maximum possible
set which fit the δ criteria as described above.

what remains is a probability distribution of the form:

Pθj = N(Xθj , σ2In) (13)

of which we wish to bound the KL divergence:

KL(Pθi ||Pθj ) =
1

2σ2
||Xθi − Xθj ||22 (14)

to be continued in more detail the next lecture.

References

[1] Wainwright, Martin J., High-Dimensional Statistics: A Non-Asymptotic Viewpoint, Cam-
bridge Series in Statistical and Probabilistic Mathematics, 2019.

3


