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1 Overview

In the last lecture, we lower bounded the minimax risk M using Proposition 15.12 from W [1].
Then, we used the relation between mutual information and Kullback Leibler divergence (15.34 in
W [1]), to find the following result:

Recall: If (θ∼
1), . . . , θ∼

M ) are 2δ separated under P, then

M ≥ φ(δ)

1−

1
µ2
∑
i 6=j

KL(Pθ∼
i ||Pθ∼

j ) + 1

log2M


.

In this lecture, we continue to linear regression example and prove the lower bound for minimax
MSE for that example. After that, we cover some basics of information theory.

2 Example: Linear Regression (continued)

– Suppose Y∼ ∼ N(Xθ∼
∗), σ2In) when (Y∼ ,X) are observed and θ∼

∗ is unknown.

– We want a lower bound on minimax MSE (Xθ∼
∗)), where

MSE(Xθ∼
∗)) =

1

n
||Xθ∼

∗)− Xθ̂∼)||22.

That is why we need following claims.

• Claim 1. If γ
∼
1, . . . , γ

∼
M ∈ range(X) are such that

||γ
∼
i − γ

∼
j || > 2δ

√
n ∀i 6= j,

then ∃θ∼
1, . . . , θ∼

M such that

ρ(θ∼
i, θ∼

j)
1√
n
||Xθ∼

i − Xθ∼
j ||2 > 2δ

• Claim 2. If γ
∼
1, . . . , γ

∼
M ∈ range(X) are such that

||γ
∼
i|| ≤ 4δ

√
n ∀i,

then

KL(Pθ∼
i ||Pθ∼

j ) ≤
32nδ2

σ2

1



Proof of Claim 2: We know that Pθ∼
j = N(Xθ∼

j , σ2In). That is why,

KL(Pθ∼
i ||Pθ∼

j ) =
1

2σ2
||Xθ∼

i)− Xθ∼
j)|| (by explicit calculation) (1)

≤ 1

2σ2

[
||γ

∼
i||+ ||γ

∼
j ||
]2

(by triangle inequality) (2)

Then, we use the norm bound, i.e., 4δ
√
n, in Claim 2 to get the desired KL-divergence bound 32nδ2

σ2 .

Recall: The largest cardinality of an ε−separated set in a subset K of a metric space (T,d) is
called the packing number of K, i.e., P(K, ε), which is a function of ε.

We proved that
vol(K)

vol(εBr
2)
≤ N(K, ε) ≤ P(K, ε),

where N(K, ε) is the covering number and Br
2 is the unit norm-ball.

In our case (linear regression example), K ⊆ Rr, rank(X)=r, ε = 2δ
√
n, K = ”4δ

√
nBr

2” (inside
the range(X)). Therefore,

M ≥
(

4δ
√
n

2δ
√
n

)r
= 2r ⇒ log2M ≥ r

So, we can write

M ≥ δ2

(
1−

32nδ2

σ2 + 1

r

)
(3)

≈ δ2

2
(4)

where (3) comes from combining above bound for r and the bound we got from Claim 2, and
plugging them in the lower bound of minimax risk given in Section 1. Then, we can write the lower
bound in (4) by taking δ2 = σ2

64
r
n when r is sufficiently large.

3 Quick Tour of Information Theory

- Note that in the interest of keeping things simple, we will do everything in discrete spaces

- Mostly from Chapter 2 of Cover-Thomas [2]

Definition 1. If X∈ X is a discrete random variable with pmf p(x), the entropy of X is

H(X) = −
∑
x∈X

p(x) log p(x),

with the convention that 0 log 0 = 0 and 0 log 0
0 = 0.
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Claim 2. If X is finite, then
H(X) ≤ log |X |

with equality if and only if X is uniform over X .

Proof: Suppose U is uniform over X , then

H(U) = −
∑
u∈X

p(u) log p(u) (5)

= −
∑
u∈X

1

|X |
log

1

|X |
(6)

= log |X | (7)

On the other hand,

0 ≤ KL(X||U) (8)

=
∑
x∈X

p(x) log
p(x)

1/|X |
(9)

= log |X | − (−
∑
x∈X

p(x) log p(x)) (10)

= log |X | −H(X) (11)

which completes the proof.

Definition 3. For a pair of random variables (X, Y), the conditional entropy of X|Y is

H(X|Y ) = −
∑

x∈X ,y∈Y
p(x, y) log p(x, y),

where p(x, y) can be also written as p(y)p(x|y). This can be considered as expectation of conditional
distribution x|y.
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