MATHS888: High-dimensional probability and statistics Fall 2021

Lecture 32 — 19th November, 2021
Sebastien Roch, UW-Madison Scribe: Gokcan Tatli

1 Overview

In the last lecture, we lower bounded the minimax risk 9t using Proposition 15.12 from W [1].
Then, we used the relation between mutual information and Kullback Leibler divergence (15.34 in
W [1]), to find the following result:

Recall: If (91),...,0™) are 26 separated under P, then

ﬁ > KL(Pyi||Pys) +1
i#j ~R
> () [ 1 -
M = ¢(6) log, M

In this lecture, we continue to linear regression example and prove the lower bound for minimax
MSE for that example. After that, we cover some basics of information theory.

2 Example: Linear Regression (continued)

— Suppose Y ~ N(X@*),021,) when (Y, X) are observed and §* is unknown.
— We want a lower bound on minimax MSE (X)), where
* 1 * )
MSE(Xg")) = ~|X¢") = XQ)][5.

That is why we need following claims.

Claim 1. If 4',... . v™ € range(X) are such that
Iy =7l > 20v/n Vi #j,

then 3%, ...,0™ such that

| . .
o8 0) %G~ X2 > 29

Claim 2. If 41, ..., v € range(X) are such that

Il < 46v/n Vi,

then
32n62

1



Proof of Claim 2: We know that Py, = N(X¢?,0°I,). That is why,

1 ; ; - .
K L(PQiHPQj) = @HXQZ) —X¢’)|| (by explicit calculation) (1)
1 . 12 ) ) )
< By {szH + H’NVJH} (by triangle inequality) (2)
Then, we use the norm bound, i.e., 46y/n, in Claim 2 to get the desired KL-divergence bound 320#52.

Recall: The largest cardinality of an e—separated set in a subset K of a metric space (T,d) is
called the packing number of K, i.e., P(K,€), which is a function of e.

We proved that

vol(K)
WEBQ) < N(K,e) <P(K,e),

where N (K, ¢) is the covering number and Bj is the unit norm-ball.
In our case (linear regression example), K C R", rank(X)=r, ¢ = 2§\/n, K = "4§\/nB}” (inside

the range(X)). Therefore,
46+/n\"
M > =2"=log, M >
- (2(5\/ﬁ) T 0B M =T

So, we can write

32n6°2
+1
m > 4§ (1 — 02> (3)

(4)

2
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where (3) comes from combining above bound for r and the bound we got from Claim 2, and

plugging them in the lower bound of minimax risk given in Section 1. Then, we can write the lower
0'2 T

bound in (4) by taking 6 = £; when r is sufficiently large.

3 Quick Tour of Information Theory

- Note that in the interest of keeping things simple, we will do everything in discrete spaces

- Mostly from Chapter 2 of Cover-Thomas [2]

Definition 1. If X€ X is a discrete random variable with pmf p(x), the entropy of X is

H(X) ==Y p(x)logp(x),

zeX

with the convention that 0log(0 = 0 and Olog% = 0.



Claim 2. If X is finite, then
H(X) < log|X]|

with equality if and only if X is uniform over X.

Proof: Suppose U is uniform over X', then

HU) = —;p u) log p(u (5)

R iy )

= log|X| (7)

On the other hand,

0 < KL(X|U) (8)

-2 ot 17 ©)

= longl (=) p(a)logp(a (10)

o] - H(Y) (11)

which completes the proof.

Definition 3. For a pair of random variables (X, Y), the conditional entropy of X|Y is

HX|Y)=— Y plx,y)logp(z,y),

reX,yey

where p(z,y) can be also written as p(y)p(z|y). This can be considered as expectation of conditional
distribution x|y.
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