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Recall from last time, under the hypothesis testing problem setting:

• θ1, . . . , θM are 2δ-separated under ρ over the space Θ(P).

• Pick J uniformly at random on [M ]. Given J = j, pick Z ∼ Pθj where θ(Pθj ) = θj .

• QZ,J is the joint distribution of (Z, J).

Fano’s method can be stated as (Proposition 15.12 and equation (15.34) in [1]; we will give a proof
in the next lectures)

M
∆
= M(θ(P); Φ ◦ ρ) = inf

θ̂
sup
P∈P

EP[Φ(ρ(θ̂, θ(P)]

≥ Φ(δ) ·

1−

1
M2

M∑
i 6=j

KL(Pθi‖Pθj ) + 1

log2M

 .

(1)

Today we finish the linear regression example and show that the least-squares estimate achieves
the minimax risk (under the mean-squared error) up to constant.

1 Example: Linear Regression (15.14 in [1]): Continued

Recall the assumption: Y ∼ N (Xθ∗, σ2In), where Y and X are observed, and θ∗ is unknown. We
want a lower bound for minimax of MSE, i.e.

MSE(Xθ̂) =
1

n
‖Xθ∗ − Xθ̂‖22, (2)

we have 2 claims as follow:

• Claim 1. (proved at the end of the last lecture): If γ1, . . . , γM ∈ range(X), s.t.

‖γi − γj‖2 > 2δ
√
n ∀i 6= j, (3)

then there ∃θ1, . . . , θM , s.t.

ρ(θi, θj)
∆
=

1√
n
‖Xθi − Xθj‖2 > 2δ ∀i 6= j. (4)

• Claim 2. : If γ1, . . . , γM ∈ range(X), s.t.

‖γi‖2 < 4δ
√
n ∀i, (5)
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then

KL(Pθi‖Pθj ) ≤ 32n
δ2

σ2
. (6)

Proof. (Claim 2.) Since Pθ = N (Xθ, σ2In),

KL(Pθi‖Pθj ) =
1

2σ2
‖Xθi − Xθj‖22

≤ 1

2σ2
·
(
‖γi‖2 + ‖γj‖2

)2

(triangular inequality of norm)

= 32n
δ2

σ2

(7)

Recall the packing number : the largest cardinality of an ε-separated set in a subset K of a metric
space(T , d) is called the packing number of K, i.e. P(K, ε). We proved,

V ol(K)

V ol(εBr
2)
≤ N (K, ε) ≤ P(K, ε) (8)

with (T , d) as Rr with l2-norm, and Br
2 is the unit ball under Euclidian distance.

We adapt it into our linear regression problem, K ⊂ Rr, with r = rank(X), chose ε = 2δ
√
n and

K = 4δ
√
nBr

2 (technically, inside the range of X), we have

M ≥
(

4δ
√
n

2δ
√
n

)r
= 2r ⇐⇒ log2M ≥ r. (9)

Combine Claim 2 and the result from Fano’s method at the beginning,

M ≥ δ2

(
1−

32nδ2

σ2 + 1

r

) (
since all KL’s are bounded by either 0 or

32nδ2

σ2

)
≈ Ω(δ2)

(10)

by taking δ2 = σ2r
64n (when r is sufficiently large).

2 Quick Tour for Information Theory

Remark 2.1. In the interest of keeping things simple, we will derive everything on discrete spaces.

Most of contents are covered in Chapter 2 of [2].

Definition 1. If X ∈ X is a discrete r.v. with probability mass function p(x), the textitentropy of
X is

H(X) = −
∑
x∈X

p(x) log p(x), (11)

with the criteria that 0 log 0 = 0, and 0 log 0
0 = 0.
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Claim 2. If X is finite, then
H(X) ≤ log(|X |) (12)

with equality iff X is uniform on X .

Proof.

⇐ Suppose U is uniform on X , then

H(U) = −
∑
u∈X

p(u) log p(u)

=
∑
u∈X

1

|X |
log |X |

= log |X |

(13)

⇒
0 ≤ KL(X|U) =

∑
u∈X

p(x) log
p(x)

1/|X |

=
∑
u∈X

p(u) log p(u)− log |X |

= −H(X)− log |X |

(14)

Definition 3. For a pair of r.v.s (X,Y ), the conditional entropy X|Y is

H(X|Y ) = −
∑

x∈X ,y∈Y
p(x, y) log p(x|y) (15)

Remark 2.2. By using p(x, y) = p(y)p(x|y), we know above conditional entropy is the entropy of
X given y, averaged over the distribution of Y.
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