MATHS888: High-dimensional probability and statistics Fall 2021

Lecture 32 — 19th November, 2021
Sebastien Roch, UW-Madison Scribe: Yu Sun, Sebastien Roch

Recall from last time, under the hypothesis testing problem setting;:

o 0',....0M

are 2J-separated under p over the space O(P).
e Pick J uniformly at random on [M]. Given J = j, pick Z ~ Pp; where 0(Py;) = 6.
e Qz ;s is the joint distribution of (Z, J).

Fano’s method can be stated as (Proposition 15.12 and equation (15.34) in [1]; we will give a proof
in the next lectures)
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Today we finish the linear regression example and show that the least-squares estimate achieves
the minimax risk (under the mean-squared error) up to constant.

1 Example: Linear Regression (15.14 in [1]): Continued

Recall the assumption: Y ~ N(X@*,02%I,), where Y and X are observed, and #* is unknown. We
want a lower bound for minimax of MSE, i.e.

MSE(xX6) = [|X6° — %]} 2)
we have 2 claims as follow:
e Claim 1. (proved at the end of the last lecture): If 41, ..., 7™ € range(X), s.t.
I3" = 2"ll > 20V Vi # (3)
then there 30',...,0M, s.t.
A1 . . o
p(8",¢") = WHX@ — X@|]2 > 25 Vi # . (4)
e Claim 2. : If 11, e ,lM € range(X), s.t.
INll2 < 46v/n Vi, (5)
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Proof. (Claim 2.) Since Py = N'(X0, 0%1,,),
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K L(Py||Py) = 55IX0" — X673
1 . O\ 2

< 9552 <||’YZ||2 + ||’ ||2> (triangular inequality of norm) (7)
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Recall the packing number: the largest cardinality of an e-separated set in a subset K of a metric
space(T,d) is called the packing number of K, i.e. P(K,¢€). We proved,
Vol(K)
— < K. ¢) <P(K 8
Pt < MU < P, (5)
with (7,d) as R" with ly-norm, and Bj is the unit ball under Euclidian distance.

We adapt it into our linear regression problem, K C R”, with r = rank(X), chose ¢ = 20/n and
K = 46+/nB} (technically, inside the range of X), we have

45\/n\"
> =27 — >r.
M > <26\/ﬁ> 2 logy M >r 9)

Combine Claim 2 and the result from Fano’s method at the beginning,
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0 > 21— <22~ since all KL’s are bounded by either 0 or Rl
r o? (10)
~ Q(6?)
by taking §2 = g% (when r is sufficiently large).

2  Quick Tour for Information Theory

Remark 2.1. In the interest of keeping things simple, we will derive everything on discrete spaces.

Most of contents are covered in Chapter 2 of [2].
Definition 1. If X € X is a discrete r.v. with probability mass function p(x), the textitentropy of
X is

H(X) ==Y p(z)logp(z), (11)

TeEX

with the criteria that 0log0 = 0, and Olog% =0.
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Claim 2. If X is finite, then
H(X) < log(|X]) (12)

with equality iff X is uniform on X.

Proof.

< Suppose U is uniform on X, then

H(U) == p(u)logp(u)

uGX
= log | X| (13)
-2
= log ||
=
0< KL(X|U) = p(x log
3 rlon
=) p(u)logp(u) — log | X| (14)
ueX
— —H(X) —log|X|
O
Definition 3. For a pair of r.v.s (X,Y), the conditional entropy X|Y is
HX[Y)=~- Y plx,y)logp(z|y) (15)

zeX,ycy

Remark 2.2. By using p(z,y) = p(y)p(z|y), we know above conditional entropy is the entropy of
X given y, averaged over the distribution of ).
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