

Recall from last time, under the hypothesis testing problem setting:

- $\underline{\theta}^1, \ldots, \underline{\theta}^M$ are 2 δ -separated under ρ over the space $\Theta(\mathcal{P})$.
- Pick J uniformly at random on [M]. Given $J = j$, pick $Z \sim \mathbb{P}_{\theta j}$ where $\theta(\mathbb{P}_{\theta j}) = \theta^j$.
- $\mathbb{Q}_{Z,J}$ is the joint distribution of (Z,J) .

Fano's method can be stated as (Proposition 15.12 and equation (15.34) in [1]; we will give a proof in the next lectures)

$$
\mathfrak{M} \stackrel{\Delta}{=} \mathfrak{M}(\theta(\mathcal{P}); \Phi \circ \rho) = \inf_{\hat{\theta}} \sup_{\mathbb{P} \in \mathcal{P}} \mathbb{E}_{\mathbb{P}}[\Phi(\rho(\hat{\theta}, \theta(\mathbb{P}))]
$$
\n
$$
\geq \Phi(\delta) \cdot \left\{ 1 - \frac{\frac{1}{M^2} \sum_{i \neq j}^{M} KL(\mathbb{P}_{\theta_i} \| \mathbb{P}_{\theta^j}) + 1}{\log_2 M} \right\}.
$$
\n(1)

Today we finish the linear regression example and show that the least-squares estimate achieves the minimax risk (under the mean-squared error) up to constant.

1 Example: Linear Regression (15.14 in [1]): Continued

Recall the assumption: $\underline{Y} \sim \mathcal{N}(\mathbb{X} \underline{\theta}^*, \sigma^2 I_n)$, where \underline{Y} and X are observed, and $\underline{\theta}^*$ is unknown. We want a lower bound for minimax of MSE, i.e.

$$
\text{MSE}(\mathbb{X}\hat{\theta}) = \frac{1}{n} \|\mathbb{X}\underline{\theta}^* - \mathbb{X}\hat{\theta}\|_2^2,\tag{2}
$$

we have 2 claims as follow:

• Claim 1. (proved at the end of the last lecture): If $\gamma^1, \ldots, \gamma^M \in range(\mathbb{X})$, s.t.

$$
\|\underline{\gamma}^i - \underline{\gamma}^j\|_2 > 2\delta\sqrt{n} \quad \forall i \neq j,
$$
\n(3)

then there $\exists \underline{\theta}^1, \ldots, \underline{\theta}^M$, s.t.

$$
\rho(\underline{\theta}^i, \underline{\theta}^j) \stackrel{\Delta}{=} \frac{1}{\sqrt{n}} \|\mathbb{X}\underline{\theta}^i - \mathbb{X}\underline{\theta}^j\|_2 > 2\delta \quad \forall i \neq j.
$$
\n(4)

• Claim 2. : If $\gamma^1, \ldots, \gamma^M \in range(\mathbb{X}), \text{ s.t.}$

$$
\|\gamma^i\|_2 < 4\delta\sqrt{n} \quad \forall i,\tag{5}
$$

then

$$
KL(\mathbb{P}_{\underline{\theta}^i} \| \mathbb{P}_{\underline{\theta}^j}) \le 32n \frac{\delta^2}{\sigma^2}.
$$
\n⁽⁶⁾

Proof. (Claim 2.) Since $\mathbb{P}_{\theta} = \mathcal{N}(\mathbb{X}_{\theta}, \sigma^2 I_n)$,

$$
KL(\mathbb{P}_{\underline{\theta}^{i}} \| \mathbb{P}_{\underline{\theta}^{j}}) = \frac{1}{2\sigma^{2}} \| \mathbb{X} \underline{\theta}^{i} - \mathbb{X} \underline{\theta}^{j} \|_{2}^{2}
$$

\n
$$
\leq \frac{1}{2\sigma^{2}} \cdot \left(\| \underline{\gamma}^{i} \|_{2} + \| \underline{\gamma}^{j} \|_{2} \right)^{2} \text{(triangular inequality of norm)}
$$

\n
$$
= 32n \frac{\delta^{2}}{\sigma^{2}}
$$
 (11)

 \Box

Recall the packing number: the largest cardinality of an ϵ -separated set in a subset K of a metric space(\mathcal{T}, d) is called the *packing number* of K, i.e. $\mathcal{P}(K, \epsilon)$. We proved,

$$
\frac{Vol(K)}{Vol(\epsilon B_2^r)} \le \mathcal{N}(K, \epsilon) \le \mathcal{P}(K, \epsilon)
$$
\n(8)

with (\mathcal{T}, d) as \mathbb{R}^r with l_2 -norm, and B_2^r is the unit ball under Euclidian distance.

We adapt it into our linear regression problem, $K \subset \mathbb{R}^r$, with $r = rank(\mathbb{X})$, chose $\epsilon = 2\delta\sqrt{n}$ and $K = 4\delta\sqrt{n}B_2^r$ (technically, inside the range of X), we have

$$
M \ge \left(\frac{4\delta\sqrt{n}}{2\delta\sqrt{n}}\right)^r = 2^r \iff \log_2 M \ge r.
$$
 (9)

Combine Claim 2 and the result from Fano's method at the beginning,

$$
\mathfrak{M} \ge \delta^2 \left(1 - \frac{\frac{32n\delta^2}{\sigma^2} + 1}{r} \right) \qquad \left(\text{since all KL's are bounded by either 0 or } \frac{32n\delta^2}{\sigma^2} \right) \tag{10}
$$
\n
$$
\approx \Omega(\delta^2)
$$

by taking $\delta^2 = \frac{\sigma^2 r}{64n}$ $rac{\sigma^2 r}{64n}$ (when r is sufficiently large).

2 Quick Tour for Information Theory

Remark 2.1. In the interest of keeping things simple, we will derive everything on discrete spaces.

Most of contents are covered in Chapter 2 of [2].

Definition 1. If $X \in \mathcal{X}$ is a discrete r.v. with probability mass function $p(x)$, the textitentropy of X is

$$
H(X) = -\sum_{x \in \mathcal{X}} p(x) \log p(x),\tag{11}
$$

with the criteria that $0 \log 0 = 0$, and $0 \log \frac{0}{0} = 0$.

Claim 2. If X is finite, then

$$
H(X) \le \log(|\mathcal{X}|) \tag{12}
$$

with equality iff X is uniform on \mathcal{X} .

Proof.

 \Leftarrow Suppose U is uniform on X, then

$$
H(U) = -\sum_{u \in \mathcal{X}} p(u) \log p(u)
$$

=
$$
\sum_{u \in \mathcal{X}} \frac{1}{|\mathcal{X}|} \log |\mathcal{X}|
$$

=
$$
\log |\mathcal{X}|
$$
 (13)

⇒

$$
0 \le KL(X|U) = \sum_{u \in \mathcal{X}} p(x) \log \frac{p(x)}{1/|\mathcal{X}|}
$$

=
$$
\sum_{u \in \mathcal{X}} p(u) \log p(u) - \log |\mathcal{X}|
$$

=
$$
-H(X) - \log |\mathcal{X}|
$$
 (14)

 \Box

Definition 3. For a pair of r.v.s (X, Y) , the conditional entropy $X|Y$ is

$$
H(X|Y) = -\sum_{x \in \mathcal{X}, y \in \mathcal{Y}} p(x, y) \log p(x|y)
$$
\n(15)

Remark 2.2. By using $p(x, y) = p(y)p(x|y)$, we know above conditional entropy is the entropy of X given y, averaged over the distribution of \mathcal{Y} .

References

- [1] Wainwright, Martin J., High-Dimensional Statistics: A non-Asymptotic Viewpoint, Cambridge Series in Statistical and Probabilistic Mathematics, 2019
- [2] Cover, Thomas M., Elements of information theory, John Wiley & Sons, 1999.