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1 Overview

In today’s lecture we continue our quick tour of information theory, which prepare us for the proof
of Fano’s method. More material can be found in [1].

2 Quick tour of information theory

We assume RVs are discrete, we use X to denote RV, zx for a specific value, X for the set of all
possible value, p(z) for probability mass function at x. Convention: 0log0 = 0, Olog% =0

Definition 1. H(X) = -3, p(z)logp(x)

Remark. Under the assumption that X is finite, it holds that H(z) < log|X|, and the equality is
achieved for uniform distribution only.

Definition 2. H(X|Y) = — Zm’y p(z,y)log p(z|y)

Remark. Since H(X|Y) = —3_, p(y) >_, p(x|y) log p(z|y), conditional entropy can be understand
as the expectation of entropy of conditional distribution of X given Y .

Lemma 3. H(X,Y)=H(X)+ H(Y|X)
Proof. H(X,Y)= -3, p(z,y)logp(z,y) = —>_, , p(,y)logp(x)—3_, , p(x,y)logp(y|lz)= H(X)+
H(Y|X). O

Lemma 4. (Chazn rule) H(Xl, ,Xn) = Z?:l H(XZ'|XZ'_1, ceey Xl)

Proof. By induction. O
Definition 5. I(X;Y) = KL(Pxy||PxPy)

Remark. I(X;Y) is always non-negative, and equal to zero iff X LY.

Lemma 6. I(X;Y)=H(X)-HX|Y)=H(Y)—- H(Y|X)

Proof. I(X;Y) =3, ,p(z,y)log pz(’gz’f’(’;) = sy P y)logp(zly)—>_, , p(z,y)logp(zx) = —H(X|Y)+
H(X). O

Lemma 7. H(X|Y) < H(X)

Proof. This follows from I(X;Y) = H(X) - H(X|Y) > 0. O



Definition 8. (conditional mutual information)
I(X;Y|Z) = H(X|Z) — HX]|Y, Z)

el
= 3 vl low s

Lemma 9. [(X;Y|Z) =0+ X LY|Z

Proof. X 1L Y|Z <= p(z,y|z) = p(z|2z)p(y|2),Vz,y,2 <= I(X;Y|Z) =0 O

Remark. The conditional independence is equivalent to the following two factorization of joint
density function:

p(z,y,2) = p(z)p(z|2)p(yl2), Va, y, 2 (1)
which means we first generate z from p(z), then generate x,z from p(z|z),p(y|z) respectively. In
graphical model this is:

If we apply Bayesian rule on p(x|z), we get

p((L’,y,Z) :p(:c)p(z]x)p(y]z),V:c,y,z (2)

which means we first generate x from p(x), then generate z from p(z|z), finally generate y from

p(y|z). In graphical model this is:

Lemma 10. (Chain rule for MI)
n
I( X1, Xn3Y) = ZI(Xi;Y’Xi—la ey X1)
i=1

Lemma 11. (Data processing inequality) If X — Y — Z, then I(X;Y) > I(X;Z). FEquiva-
lently, H(X|Y) < H(X|Z)

Remark. Interpretation: Consider Z as some function of Y, data processsing inequality tells that
any function of Y does not contain more information about X than 'Y itself.

Proof. Apply chain rule with (X1, X2) = (Z,Y), (Y, Z) respectively, we get the following two in-
equalities:

[(X;Y,2) = [(X; Z2) + [(X;Y]Z) = [(X;Y) + [(X; Z]Y)
Since I(X;Y|Z) > 0 and I(X; Z]Y') = 0 by assumption, the proof completes. O



Theorem 12. (Fano’s Inequality) Suppose X —Y — X, and P, = ]P’(X # X)), then
H(P) + P.log|X| > H(X|Y)

where H (P.) is defined as the entropy of an indication RV, formally we define H(P.) := — P, log P.—
(1— P.)log(1— P.).

Proof.

. {1 if X £ X
0 otherwise
Apply chain rule with different order of FE, X, we get
H(E,X|X)=H(X|X)+ H(E|X,X)
= H(E|X)+ HX|X,E)
Note that H(E|X) < H(E) = H(P.), H(X|X,E) = P(E = 0)H(X|X,E = 0)+P(E = )H(X|X,E =
1) < P.log(|X| —1), H(E|X,X) = 0, plug these inequality into (3), we get

H(X|X) < H(P.) + P.log(|X]) (4)

(3)

Finally, by data process inequality, we have
H(X|X)>H(X|Y)
Plug this into (4) complete the proof. O

Application to Fano’s method
o | X|=M
e J uniform at random in [M]
o Z ~ Py given J =j
o test Y(Z)
Apply Fano’s inequality with J = X, Z =Y, ¢(X) = X.

Note that H(Z,J) = H(J|Z) = H(J) — I(Z;J) = logM — I(Z;J), and H(P,) term in Fano’s
inequality < 1 since the indicator function can only take 2 value. From Fano we have

1+ Q(Z) # J)log M >log M — I(Z;J)

Rearrange terms we get
I(Z;J)+1
Z >1— ——
Q(z) #7121 - 10
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