

1 Overview

In today's lecture we continue our quick tour of information theory, which prepare us for the proof of Fano's method. More material can be found in [1].

2 Quick tour of information theory

We assume RVs are discrete, we use X to denote RV, x for a specific value, $\mathcal X$ for the set of all possible value, $p(x)$ for probability mass function at x. Convention: $0 \log 0 = 0, 0 \log \frac{0}{0} = 0$

Definition 1. $H(X) = -\sum_{x \in \mathcal{X}} p(x) \log p(x)$

Remark. Under the assumption that X is finite, it holds that $H(x) \leq \log |\mathcal{X}|$, and the equality is achieved for uniform distribution only.

Definition 2. $H(X|Y) = -\sum_{x,y} p(x,y) \log p(x|y)$

Remark. Since $H(X|Y) = -\sum_{y} p(y) \sum_{x} p(x|y) \log p(x|y)$, conditional entropy can be understand as the expectation of entropy of conditional distribution of X given Y .

Lemma 3. $H(X, Y) = H(X) + H(Y|X)$

Proof. $H(X,Y) = -\sum_{x,y} p(x,y) \log p(x,y) = -\sum_{x,y} p(x,y) \log p(x) - \sum_{x,y} p(x,y) \log p(y|x) = H(X) +$ $H(Y|X)$. \Box

Lemma 4. *(Chain rule)* $H(X_1, ..., X_n) = \sum_{i=1}^n H(X_i | X_{i-1}, ..., X_1)$

Proof. By induction.

Definition 5. $I(X;Y) = KL(P_{XY} || P_X P_Y)$

Remark. $I(X; Y)$ is always non-negative, and equal to zero iff $X \perp Y$.

Lemma 6. $I(X;Y) = H(X) - H(X|Y) = H(Y) - H(Y|X)$

Proof. $I(X;Y) = \sum_{x,y} p(x,y) \log \frac{p(x,y)}{p(x)p(y)} = \sum_{x,y} p(x,y) \log p(x|y) - \sum_{x,y} p(x,y) \log p(x) = -H(X|Y) +$ $H(X)$. \Box

Lemma 7. $H(X|Y) \leq H(X)$

Proof. This follows from $I(X; Y) = H(X) - H(X|Y) \geq 0$. \Box

 \Box

Definition 8. (conditional mutual information)

$$
I(X;Y|Z) := H(X|Z) - H(X|Y,Z)
$$

=
$$
\sum_{x,y,z} p(x,y,z) \log \frac{p(x,y|z)}{p(x|z)p(y|z)}
$$

Lemma 9. $I(X;Y|Z) = 0 \Longleftrightarrow X \perp Y|Z$

Proof.
$$
X \perp Y|Z \iff p(x,y|z) = p(x|z)p(y|z), \forall x, y, z \iff I(X;Y|Z) = 0
$$

Remark. The conditional independence is equivalent to the following two factorization of joint density function:

$$
p(x, y, z) = p(z)p(x|z)p(y|z), \forall x, y, z \tag{1}
$$

which means we first generate z from $p(z)$, then generate x, z from $p(x|z)$, $p(y|z)$ respectively. In graphical model this is:

If we apply Bayesian rule on $p(x|z)$, we get

$$
p(x, y, z) = p(x)p(z|x)p(y|z), \forall x, y, z
$$
\n⁽²⁾

which means we first generate x from $p(x)$, then generate z from $p(z|x)$, finally generate y from $p(y|z)$. In graphical model this is:

Lemma 10. (Chain rule for MI)

$$
I(X_1, ..., X_n; Y) = \sum_{i=1}^{n} I(X_i; Y | X_{i-1}, ..., X_1)
$$

Lemma 11. (Data processing inequality) If $X \to Y \to Z$, then $I(X;Y) \geq I(X;Z)$. Equivalently, $H(X|Y) \leq H(X|Z)$

Remark. Interpretation: Consider Z as some function of Y, data processing inequality tells that any function of Y does not contain more information about X than Y itself.

Proof. Apply chain rule with $(X_1, X_2) = (Z, Y), (Y, Z)$ respectively, we get the following two inequalities:

$$
I(X; Y, Z) = I(X; Z) + I(X; Y|Z) = I(X; Y) + I(X; Z|Y)
$$

Since $I(X; Y|Z) \geq 0$ and $I(X; Z|Y) = 0$ by assumption, the proof completes.

 \Box

Theorem 12. (Fano's Inequality) Suppose $X \to Y \to \hat{X}$, and $P_e = \mathbb{P}(\hat{X} \neq X)$, then $H(P_e) + P_e \log |\mathcal{X}| \geq H(X|Y)$

where $H(P_e)$ is defined as the entropy of an indication RV, formally we define $H(P_e) := -P_e \log P_e (1 - P_e) \log(1 - P_e)$.

Proof.

$$
E = \begin{cases} 1 & \text{if } \hat{X} \neq X \\ 0 & \text{otherwise} \end{cases}
$$

Apply chain rule with different order of E, X , we get

$$
H(E, X | \hat{X}) = H(X | \hat{X}) + H(E | X, \hat{X})
$$

= H(E | \hat{X}) + H(X | \hat{X}, E) (3)

Note that $H(E|\hat{X}) \leq H(E) = H(P_e)$, $H(X|\hat{X}, E) = \mathbb{P}(E = 0)H(X|\hat{X}, E = 0) + \mathbb{P}(E = 1)H(X|\hat{X}, E = 0)$ $1) \leq P_e \log(|\mathcal{X}|-1)$, $H(E|X, \hat{X})=0$, plug these inequality into (3), we get

$$
H(X|\hat{X}) \le H(P_e) + P_e \log(|\mathcal{X}|)
$$
\n⁽⁴⁾

Finally, by data process inequality, we have

$$
H(X|\hat{X}) \ge H(X|Y)
$$

Plug this into (4) complete the proof.

Application to Fano's method

- $|\mathcal{X}| = M$
- J uniform at random in $[M]$
- $Z \sim P_{\theta_j}$ given $J = j$
- test $\psi(Z)$

Apply Fano's inequality with $J = X$, $Z = Y$, $\psi(X) = \hat{X}$. Note that $H(Z, J) = H(J|Z) = H(J) - I(Z; J) = \log M - I(Z; J)$, and $H(P_e)$ term in Fano's inequality ≤ 1 since the indicator function can only take 2 value. From Fano we have

$$
1 + Q[\psi(Z) \neq J] \log M \ge \log M - I(Z; J)
$$

Rearrange terms we get

$$
Q[\psi(Z) \neq J] \ge 1 - \frac{I(Z; J) + 1}{\log M}
$$

References

- [1] Cover, Thomas M., Elements of information theory, John Wiley & Sons, 1999.
- [2] Wainwright, Martin J., High-Dimensional Statistics: A Non-Asymptotic Viewpoint, Cambridge Series in Statistical and Probabilistic Mathematics, 2019.

 \Box