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1 Overview

In today’s lecture we continue our quick tour of information theory, which prepare us for the proof
of Fano’s method. More material can be found in [1].

2 Quick tour of information theory

We assume RVs are discrete, we use X to denote RV, x for a specific value, X for the set of all
possible value, p(x) for probability mass function at x. Convention: 0 log 0 = 0, 0 log 0

0 = 0

Definition 1. H(X) = −
∑

x∈X p(x) log p(x)

Remark. Under the assumption that X is finite, it holds that H(x) ≤ log |X |, and the equality is
achieved for uniform distribution only.

Definition 2. H(X|Y ) = −
∑

x,y p(x, y) log p(x|y)

Remark. Since H(X|Y ) = −
∑

y p(y)
∑

x p(x|y) log p(x|y), conditional entropy can be understand
as the expectation of entropy of conditional distribution of X given Y .

Lemma 3. H(X,Y ) = H(X) +H(Y |X)

Proof. H(X,Y ) = −
∑

x,y p(x, y) log p(x, y) = −
∑

x,y p(x, y) log p(x)−
∑

x,y p(x, y) log p(y|x)=H(X)+
H(Y |X).

Lemma 4. (Chain rule) H(X1, ..., Xn) =
∑n

i=1H(Xi|Xi−1, ..., X1)

Proof. By induction.

Definition 5. I(X;Y ) = KL(PXY ‖PXPY )

Remark. I(X;Y ) is always non-negative, and equal to zero iff X ⊥⊥ Y .

Lemma 6. I(X;Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X)

Proof. I(X;Y ) =
∑

x,y p(x, y) log p(x,y)
p(x)p(y) =

∑
x,y p(x, y) log p(x|y)−

∑
x,y p(x, y) log p(x) = −H(X|Y )+

H(X).

Lemma 7. H(X|Y ) ≤ H(X)

Proof. This follows from I(X;Y ) = H(X)−H(X|Y ) ≥ 0.
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Definition 8. (conditional mutual information)

I(X;Y |Z) := H(X|Z)−H(X|Y,Z)

=
∑
x,y,z

p(x, y, z) log
p(x, y|z)

p(x|z)p(y|z)

Lemma 9. I(X;Y |Z) = 0⇐⇒ X ⊥⊥ Y |Z

Proof. X ⊥⊥ Y |Z ⇐⇒ p(x, y|z) = p(x|z)p(y|z),∀x, y, z ⇐⇒ I(X;Y |Z) = 0

Remark. The conditional independence is equivalent to the following two factorization of joint
density function:

p(x, y, z) = p(z)p(x|z)p(y|z), ∀x, y, z (1)

which means we first generate z from p(z), then generate x, z from p(x|z), p(y|z) respectively. In
graphical model this is:

Z

X Y

If we apply Bayesian rule on p(x|z), we get

p(x, y, z) = p(x)p(z|x)p(y|z), ∀x, y, z (2)

which means we first generate x from p(x), then generate z from p(z|x), finally generate y from
p(y|z). In graphical model this is:

X Z Y

Lemma 10. (Chain rule for MI)

I(X1, ..., Xn;Y ) =
n∑
i=1

I(Xi;Y |Xi−1, ..., X1)

Lemma 11. (Data processing inequality) If X → Y → Z, then I(X;Y ) ≥ I(X;Z). Equiva-
lently, H(X|Y ) ≤ H(X|Z)

Remark. Interpretation: Consider Z as some function of Y , data processsing inequality tells that
any function of Y does not contain more information about X than Y itself.

Proof. Apply chain rule with (X1, X2) = (Z, Y ), (Y, Z) respectively, we get the following two in-
equalities:

I(X;Y, Z) = I(X;Z) + I(X;Y |Z) = I(X;Y ) + I(X;Z|Y )

Since I(X;Y |Z) ≥ 0 and I(X;Z|Y ) = 0 by assumption, the proof completes.
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Theorem 12. (Fano’s Inequality) Suppose X → Y → X̂, and Pe = P(X̂ 6= X), then

H(Pe) + Pe log |X | ≥ H(X|Y )

where H(Pe) is defined as the entropy of an indication RV, formally we define H(Pe) := −Pe logPe−
(1− Pe) log(1− Pe).

Proof.

E =

{
1 if X̂ 6= X

0 otherwise

Apply chain rule with different order of E,X, we get

H(E,X|X̂) = H(X|X̂) +H(E|X, X̂)

= H(E|X̂) +H(X|X̂, E)
(3)

Note thatH(E|X̂) ≤ H(E) = H(Pe), H(X|X̂, E) = P(E = 0)H(X|X̂, E = 0)+P(E = 1)H(X|X̂, E =
1) ≤ Pe log(|X | − 1), H(E|X, X̂) = 0, plug these inequality into (3), we get

H(X|X̂) ≤ H(Pe) + Pe log(|X |) (4)

Finally, by data process inequality, we have

H(X|X̂) ≥ H(X|Y )

Plug this into (4) complete the proof.

Application to Fano’s method

• |X | = M

• J uniform at random in [M ]

• Z ∼ Pθj given J = j

• test ψ(Z)

Apply Fano’s inequality with J = X, Z = Y , ψ(X) = X̂.
Note that H(Z, J) = H(J |Z) = H(J) − I(Z; J) = logM − I(Z; J), and H(Pe) term in Fano’s
inequality ≤ 1 since the indicator function can only take 2 value. From Fano we have

1 +Q[ψ(Z) 6= J ] logM ≥ logM − I(Z; J)

Rearrange terms we get

Q[ψ(Z) 6= J ] ≥ 1− I(Z; J) + 1

logM

References

[1] Cover, Thomas M., Elements of information theory, John Wiley & Sons, 1999.

[2] Wainwright, Martin J., High-Dimensional Statistics: A Non-Asymptotic Viewpoint, Cam-
bridge Series in Statistical and Probabilistic Mathematics, 2019.

3


