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1 Overview

In Lecture 15, we discussed the properties of the (unconstrained) least square estimator for linear
regression with sub-Gaussian noises. In this lecture, we turn our focus to a constrained version of
the least square estimator that is particularly applicable in the sparse setting.

2 Main Section

We begin by formally introducing the setting of sparse linear regression, and then we consider two
examples under different assumptions.

2.1 Sparse Linear Regression

Review of Linear Regression Recall that in the linear regression problem, we have n data
points: (X, y), where X ∈ Rn×p, and y ∈ Rn. We assume y = Xθ∗ + ε, where θ∗ ∈ Rp is the
unknown parameter. The noise ε is assumed to be sub-Gaussian with ‖ε‖ψ2 ≤ σ. The mean

squared error (MSE) of an estimator Xθ̂ is defined as MSE(Xθ̂) = 1
n‖Xθ

∗ − Xθ̂‖22. In particular,
the least square estimator is defined as:

θ̂
LS ∈ arg min

θ∈Rp
‖y − Xθ‖22

We proved in Lecture 15 that with probability at least 1− δ:

MSE(Xθ̂LS) <
∼

σ2

n
(rank(X) + log(1/δ))

Sparsity Recall that the `0 norm is defined as the number of non-zero entries of a vector:

‖θ‖0 =

p∑
j=1

1{θj 6= 0}

Intuitively, sparsity corresponds to a ”small” `0 norm. Specifically, θ is a k-sparse vector if ‖θ‖0 ≤ k.
The support of θ is defined as:

supp(θ) = {j : θj 6= 0}
Therefore we have ‖θ‖0 = | supp(θ)|. Moreover, the `0 ball B0(k) of all k-sparse vectors is denoted
as:

B0(k) = {θ ∈ Rp : ‖θ‖0 ≤ k}
where k is the sparsity level.
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2.2 Benchmarks: Special cases

Case 1 After introducing the notations, now let’s consider a simple case where we assume the
non-zero entries of θ are given. We denote S := supp(θ∗) and ∆ = |S|. Let XS denote the
submatrix of X with columns Xj for ∀j ∈ S. The corresponding least square estimator is given by:

θ̂
LS

S ∈ arg min
θ∈R∆

‖y − XSθ‖22

Thus the full solution θ̂ is:

θ̂i =

{
θ̂
LS

S,i i ∈ S
0 i /∈ S

Then, by our previous results for linear regression, we have the following bound for MSE (w.p. at
least 1− δ):

MSE(Xθ̂) <
∼

σ2

n
(‖θ∗‖0 + log(1/δ))

Case 2 Suppose supp(θ∗) is unknown but we know the number of non-zero entries k = ‖θ∗‖0. A
natural least square estimator for a fixed k is:

θ̂
LS

B0(k) ∈ arg min{‖y − Xθ‖22 : θ ∈ B0(k)}

Then we take the best estimator among θ̂
LS

S for each subset S with |S| = k. Note that this brute

force approach is computationally expensive, as we need to compute

(
p
k

)
estimators for each

k—we will come back later in the course to a computationally efficient approach. But for now,
despite the computational difficulty, we analyze the statistical properties of this estimator.

Theorem 1. (Thm 2.6 in [1]) Fix a positive integer k ≤ p/2. Let K = B0(k) be set of k-sparse
vectors of Rp and assume that θ∗ ∈ B0(k). Then, for any δ > 0, with probability 1− δ, it holds

MSE
(
Xθ̂LSB0(k)

)
.
σ2

n
log

(
p
2k

)
+
σ2k

n
+
σ2

n
log(1/δ)

Before proving the theorem, we prove a lemma. First, some notation. For any subset S ∈ {1, . . . , p},
denote rS = rank(XS) ≤ |S|. Further, let ΦS = [φ1, . . . , φrS ] ∈ Rn×rS be the collection of orthonor-
mal basis of the column space of XS .

Lemma 2. Let θ̃ = θ̂
LS

B0(k). We have

‖Xθ̃ − Xθ∗‖22 ≤ 4 max
|S|=2k

sup
u∈BrS2

(ε̃>S u)2

where ε̃S = ε>ΦS ∼ subGrS (σ2).

Proof. By definition,
‖y − Xθ̃‖22 ≤ ‖y − Xθ∗‖22 = ‖ε‖22.
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Moreover,

‖y − Xθ̃‖22 = ‖Xθ∗ + ε− Xθ̃‖22 = ‖Xθ̃ − Xθ∗‖22 − 2ε>X
(
θ̃ − θ∗

)
+ ‖ε‖22.

Rearranging the terms, we have

‖Xθ̃ − Xθ∗‖22 ≤ 2ε>X
(
θ̃ − θ∗

)
= 2‖Xθ̃ − Xθ∗‖2

ε>X
(
θ̃ − θ∗

)
‖Xθ̃ − Xθ∗‖2

.

Next we aim to bound
ε>X

(
θ̃ − θ∗

)
‖Xθ̃ − Xθ∗‖2

.

Let Ŝ = supp(θ̃ − θ∗). As both θ̃ and θ∗ have at most k non-zero entries, we have |Ŝ| ≤ 2k. Then
we know that there exists some vector ν ∈ RrŜ such that

X
(
θ̃ − θ∗

)
= ΦŜν.

Let ε̃ = ε>ΦŜ . Then we have

r =
ε>X

(
θ̃ − θ∗

)
‖Xθ̃ − Xθ∗‖2

=
ε>ΦŜν

‖ν‖2
= ε̃>

ν

‖ν‖2
≤ max
|S|=2k

sup
u∈BrS2

[
ε>ΦS

]
u,

where BrS2 is the unit ball of RrS . Here we need to “sup out” the support of θ̃ − θ∗ and the
vector ν as they depend in a subtle way on ε (and therefore would prevent us form applying the
sub-Gaussianity of ε). Therefore, we have:

‖Xθ̃ − Xθ∗‖22 ≤ 4 max
|S|=2k

sup
u∈BrS2

(ε̃>S u)2,

where ε̃S = ε>ΦS ∼ subGrS (σ2), as claimed. This last claim on the sub-Gaussian norm of ε>ΦS

follows from the fact that the columns of ΦS are orthonormal by construction and from the defintion
of the sub-Gaussian vectors.

We will conclude the proof of the theorem next time.
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