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1 Overview

In the last lecture we focused on a constrained version of the least square estimator that is partic-
ularly applicable in the sparse setting.

In this lecture we continue with the proof of Theorem 2.6 in [1] which controls the MSE of θ̂LSK
when K = B0(k)

2 Sparse linear regression: Known k

We begin by describing the problem of sparse linear regression from last time.

2.1 Reminder

Recall from last time:

• Sparsity is defined as supp(θθθ) = {j : θθθj 6= 0}

‖θθθ‖0 = |supp(θθθ)|

B0(k) = {θθθ ∈ Rp : ‖θθθ‖0 ≤ k}

• (X, Y ) ∈ Rn×p × Rn
θ̂̂θ̂θ := argmin{‖Y − Xθθθ‖2 : θθθ ∈ B0(k)}

Theorem 1 (Thm 2.6 in [1]). Assume 2k ≤ p and θθθ∗ ∈ B0(k) and ‖εεε‖ψ2 ≤ σ w.p. 1− δ

1

n
‖Xθ̂̂θ̂θ − Xθ∗θ∗θ∗‖ . σ2

n

{
k log

(p
k

)
+ log

(
1

δ

)}

2.2 Proof of Theorem 1

Recall that, for a subset s of [p], the matrix Xs contains the columns of X in s. We let rs be the
rank of Xs. Also let Φs be a matrix whose columns form an orthonormal basis of Xs.
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Lemma A:
‖Xθ̂̂θ̂θ − Xθ∗θ∗θ∗‖ ≤ 4 max

s:|s|=2k
sup
uuu∈Brs2

(ε̃̃ε̃εTs uuu)2

where ε̃̃ε̃εs = ΦT
s εεε with ‖εεε‖ψ2 ≤ σ.

The vectors θ̂̂θ̂θ and θ∗θ∗θ∗ are sparse, the first one by construction and the second one by assumption.
We proved this lemma in the last lecture but we need it for the proof of Theorem 1.

Lemma B: P
(

supuuu∈Brs2 (ε̃̃ε̃εTs uuu)2 > t
)
≤ 2 · 52k exp

( −t
4Cσ2

)
Proof. Let N be a 1

2 -net of Brs2 . By a previous bound (see Lecture 19)

|N | ≤

(
2

1
2 + 1

)rs
≤ 52k.

For any uuu ∈ Brs2 , there exists zzz ∈ N, xxx ∈ 1
2B

rs
2 such that uuu = zzz + xxx. By definition of an ε-net

sup
uuu∈Brs2

|ε̃̃ε̃εTs uuu| ≤ max
zzz∈N
|ε̃̃ε̃εTs zzz|+ sup

xxx∈ 1
2
Brs2
|ε̃̃ε̃εTs xxx|

sup
uuu∈Brs2

|ε̃̃ε̃εTs uuu| ≤ max
zzz∈N
|ε̃̃ε̃εTs zzz|+

1

2
sup
uuu∈Brs2

|ε̃̃ε̃εTs uuu| (by homogeneity)

⇒ sup
uuu∈Brs2

|ε̃̃ε̃εTs uuu| ≤ 2 max
zzz∈N
|ε̃̃ε̃εTs zzz|

Hence,

P

(
sup
uuu∈Brs2

|ε̃̃ε̃εTs uuu| >
√
t

)
≤ P

(
max
zzz∈N
|ε̃̃ε̃εTs zzz| >

√
t

2

)

≤
∑
zzz∈N

P

(
|ε̃̃ε̃εTs zzz| >

√
t

2

)
(union bound)

= 52k · 2 exp

(
−(
√
t

2 )2

Cσ2

)
(sub gaussian)

which concludes the proof.

We are ready to prove the main theorem.

Proof of Theorem 1.

P
(
‖Xθ̂̂θ̂θ − Xθ∗θ∗θ∗‖22 ≤ 4t

)
≤ P

(
max
|S|=2k

sup
uuu∈Brs2

(ε̃̃ε̃εTs uuu)2

)
(by lemma A)
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≤
∑

max|S|=2k

P

(
sup
uuu∈Brs2

(ε̃̃ε̃εTs uuu)2

)
since finite and using the union bound

≤ δ (by lemma B)

for the choice t = 1
4Cσ

2{log(
(
p
2k

)
× 2× 5k) + log(1δ )}.

By Stirling’s approximation, we get that P
(
‖Xθ̂̂θ̂θ − Xθ∗θ∗θ∗‖22 ≤ Cσ2{k log( pk ) + log(1δ )}

)
≤ δ.

2.3 Another Special Case: Sub-Gaussian Sequence Model

We assume here all columns of X are orthogonal (which can only be satisfied when p ≤ n). Formally:

• Assumption ORT: XTX
n = IIIp

• from this consider y := 1
nX

TY = 1
nX

T [Xθ∗θ∗θ∗ + εεε] = θ∗θ∗θ∗ + ξξξ where ξ = 1
nX

Tεεε ∈ Rp

• if ‖ε‖ψ2‖ ≤ σ the ‖ξ‖ψ2 ≤ σ√
n

• Normal Equations: 1
nX

TXθ̂̂θ̂θLS = 1
nX

TY then θ̂̂θ̂θLS = y

• MSE(Xθ̂̂θ̂θ) = 1
n‖Xθ̂̂θ̂θ − Xθ∗θ∗θ∗‖22 = 1

n(θ̂̂θ̂θ − θ∗θ∗θ∗)XTX(θ̂̂θ̂θ − θ∗θ∗θ∗) = ‖θ̂̂θ̂θ − θ∗θ∗θ∗‖22

Next time: assume that θ∗θ∗θ∗ is sparse. How can we improve over the least squares estimate (whose

MSE we showed to be ≈ pσ
2

n )? When there are lots of 0s in θ∗θ∗θ∗, we can hope to improve the MSE
by taking small y values and setting them equal to 0. We will give the details next time.

References

[1] Philippe Rigollet and Jan-Christian Hütter 18.657: High Dimensional Statistics Lecture Notes,
MIT, 2017

3


