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1 Overview

In Lecture 34, we saw an estimator for sparse linear regression with strong error guaranties. How-
ever, that estimator was computationally inefficient when the sparsity level was unknown. In Lec-
ture 35 we introduced the sub-Gaussian sequence model and observed that under the assumption
ORT (imposing that 1

nXX
T = Ip), that model is essentially equivalent to that of linear regression,

up to a transformation of the data and a scaling of the variance. In this lecture, we give an es-
timator for the sparse sub-Gaussian sequence model that is computationally efficient even if the
sparsity level is unknown. This implies an estimator for sparse linear regression that has the same
statistical guarantees as that of Lecture 34 as well as improved computational complexity.

2 Sparse Sub-Gaussian Sequence Model

2.1 Model Definition

Recall the sparse sub-Gaussian Sequence Model: The observation is a vector y ∈ Rp which is
generated by the process

y = θ∗ + ξ ,

where ξ ∼ subGp(σ
2/n). Following the notation of the previous lectures, we denote by ∥θ∗∥0 the

sparsity of θ∗, that is, ∥θ∗∥0 :=
∑p

i=1 1{θ∗i ̸= 0}. The goal is to find an estimator θ̂ = θ̂(y) such

that ∥θ̂ − θ∗∥2 is small with high probability.

2.2 Hard Thresholding Estimator

Since every entry of y is a perturbed version of the corresponding entry of θ∗ and since the noise
ξ is concentrated, we are motivated to threshold the entries of y, hoping that this will distinguish
the zero entries of θ∗ from the non-zero entries. We thus define the hard threshold estimator

θ̂Hj =

{
0, |yj | ≤ 2τ ,

yj , |yj | > 2τ ,
(1)

where the threshold τ remains to be specified. Formally, we show the following (also see Theorem
2.11 in [1]).
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Theorem 1. Let C be a large enough constant. If τ = σ
√
(2C/n) log(2p/δ), the estimator θ̂H

from Equation (1) satisfies

∥θ̂H − θ∗∥22 ≲
σ2

n
∥θ∗∥0 log

(
2p

δ

)
,

with probability at least 1− δ.

In comparison to the estimator from two lectures ago, we note that θ̂H is computationally efficient
while achieving the same (optimal) error rate.

Proof. We start with the following claim, saying that the selection of τ is such that all additive
errors are small.

Claim 2. Let A = {|ξj | ≤ τ ∀j}. Then P[Ac] ≤ δ.

Proof of Claim 2. By writing the complement of A as a union and using union bound, we have
that

P[Ac] = P

 p⋃
j=1

{|ξj | > τ}

 ≤ p∑
j=1

P [{|ξj | > τ}] ≤ 2p exp

(
− τ2

C2(σ2/n)

)
≤ δ ,

where for the second inequality we use that ξ ∼ subG(σ2/n), which means that if ej denotes the
j-th vector of the orthonormal basis of Rp, then ξj = ⟨ej , ξ⟩ ∼ subG(σ2/n). The last inequality
uses τ = σ

√
(2C/n) log(2p/δ).

Next, we note that under the event A, the contribution to the error from all coordinates is small.

Claim 3. Under the event A = {|ξj | ≤ τ ∀j}, the following hold for all j ∈ {1, . . . , p}:

1. If θ∗j = 0, then θ̂Hj = 0.

2. If θ∗j ̸= 0, then |θ̂Hj − θ∗j | ≤ 3τ .

Proof of Claim 3. For the first case, assume that θ∗j = 0. Then, yj = ξj and thus

|yj | = |ξj | ≤ τ ≤ 2τ ,

which means that θHj = 0. For the second case, θ∗j ̸= 0, we examine two sub-cases:

1. If |yj | > 2τ , then θ̂Hj = yj and thus |θ̂Hj − θ∗j | = |ξj | ≤ τ ≤ 3τ .

2. If |yj | ≤ 2τ , then θ̂Hj = 0 and thus |θ̂Hj − θ∗j | = |θ∗j | = |yj − ξj | ≤ 3τ by the triangle inequality.

Having these two claims at hand, we note that ∥θ̂H−θ∗∥22 =
∑p

j=1(θ̂
H
j −θ∗j )

2 ≤ 9τ2∥θ∗∥0. Plugging
the value of τ completes the proof of Theorem 1.
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2.3 Soft Thresholding Estimator

An alternative way of thresholding the values of y is used in the following estimator, for which we
get the same guarantee as in Theorem 1.

θ̂Sj =


0, |yj | ≤ 2τ ,

yj − 2τ, yj > 2τ ,

yj + 2τ, yj < −2τ ,

(2)

or, in a more compact form,

θ̂Sj =

(
1− 2τ

|yj |

)
+

yj

Theorem 4. Let C be a sufficiently large constant. If τ = σ
√

(2C/n) log(2p/δ), the estimator θ̂S

from Equation (2) satisfies

∥θ̂S − θ∗∥22 ≲
σ2

n
∥θ∗∥0 log

(
2p

δ

)
,

with probability at least 1− δ.

The proof of this is the same as that of Theorem 1, up to a small modification of the proof of Claim
3. More specifically, the case θ∗j = 0 remains the same. Regarding the other case, we again have

two sub-cases: If |yj | > 2τ , then θ̂Sj = yj − 2τ and thus |θ̂Sj − θ∗j | = |ξ − 2τ | ≤ 3τ . The second
sub-case does not need any changes.

2.3.1 LASSO estimator

The reason that we consider the soft thresholding estimator is that it is the solution of an opti-
mization problem of the following nice form.

θ̂S = arg min
θ∈Rp

{
∥y − θ∥22 + 4τ∥θ∥1

}
.

It can be easily checked that this is an equivallent form of the soft thresholding estimator by
writing ∥y − θ∥22 + 4τ∥θ∥1 =

∑p
i=1

(
(yi − θi)

2 + 4τ |θi|
)
and solving the optimization problem for

every coordinate separately.

To slightly generalize the above, we define the LASSO estimator

θ̂LASSO = arg min
θ∈Rp

{
1

n
∥y − Xθ∥22 + 4τ∥θ∥1

}
.

Based on the discussion of the last lecture, under the assumption ORT, the above estimator is
equivalent to the soft thresholding estimator. However, the LASSO estimator is natural to consider
even in the absence of that assumption.

Because of its particular form, there are algorithms for computing θ̂LASSO numerically. One such
method is coordinate descent:
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1. Until Convergence:

(a) For j = 1, . . . , p:

i. θj ← Rj (1− 2τ/|Rj |)+, where Rj = XT
j

(
y −

∑
k ̸=j θkXk

)
.

Using standard optimization results, it can be shown that this method converges to the true solution.
It remains to show statistical guaranties for θ̂LASSO, which will leave for the next lecture.
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