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1 Overview

At the end of the Lecture 36, we introduced LASSO estimator for sparse linear regression set
up, which also employs thresholding method. In this lecture, we examine the Mean Squared
Error(MSE) upper bound of LASSO estimator. Specifically, we will first prove a weak MSE bound

of the LASSO estimator, and will show that LASSO achieves the rate σ2

n log (d) with additional
assumption: Incoherence.

2 LASSO estimator

2.1 Model Definition

The LASSO estimator of θ∗ is defined by any θ̂L such that

θ̂L ∈ arg min
θ∈Rd

{
1

n
‖Y − Xθ‖22 + 2τ‖θ‖1

}
, (1)

where Y = Xθ∗ + ε, for Y ∈ Rn, X ∈ Rn×d and some random ε. Note that ‖ · ‖2 and ‖ · ‖1 are L1

and L2 norm respectively, and τ is a thresholding parameter. The LASSO estimator penalizes the
size of the choice of θ in addition to the MSE, and thus it is sometimes referred to as L1 penalized
linear regression model.

2.2 Weak rate of the LASSO

Here, we suggest a MSE bound for (1) with relatively weak assumptions: Sub-Gaussainity and
normalized X. Observe that the bound obtained from the theorem below is weaker than the one
we saw in the last lecture.

Theorem 1 (Weak rate of the LASSO). Assume that the linear model Y = Xθ∗ + ε holds, where
ε ∼ subGn(σ2). Additionally, assume that each j-th column of X Xj satisfies maxj ‖Xj‖2 ≤

√
n.

Then, with probability at least 1− δ, the LASSO estimator in (1) with regularization parameter

2τ = 2σ

√
2 log(2d)

n
+ 2σ

√
2 log(1/δ)

n
(2)
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satisfies the MSE bound

MSE(Xθ̂L) =
1

n
‖Xθ̂L − Xθ̂∗‖22 ≤ 4‖θ∗‖1σ

√
2 log(2d)

n
+ 4‖θ∗‖1σ

√
2 log(1/δ)

n
.

Note that we have σ

√
log(2d)
n in the bound, which is slower than the bound σ2 log(2d)n for Hard/Soft

Thresholding estimator from the last lecture. Let us first prove this Theorem 1 and show that we
can obtain same rate for the LASSO estimator with additional assumptions.

Proof. By the definition of the LASSO estimator θ̂L, we have

‖Y − Xθ̂L‖22 + 2nτ‖θ̂L‖1 ≤ ‖Y − Xθ̂∗‖22 + 2nτ‖θ̂∗‖1, (3)

since the LASSO estimator is the minimizer of the objective function in (1).

By using Holder’s inequality after plugging in Y = Xθ∗ + ε on the left hand side of (3), we have

‖Xθ̂L − Xθ̂∗‖22 ≤ 2εTX(θ̂L − θ∗)2 + 2nτ(‖θ̂L‖1 − ‖θ∗‖1)
≤ 2‖XT ε‖∞‖θ̂L‖1 − 2nτ‖θ̂L‖1 + 2‖XT ε‖∞‖θ∗‖1 − 2nτ‖θ∗‖1
= 2(‖XT ε‖∞ − nτ)‖θ̂L‖1 + 2(‖XT ε‖∞ + nτ)‖θ∗‖1. (4)

We will show that the first part of (4) is at most 0 and the second part of (4) is at most 4nτ‖θ ∗ ‖1
with probability at least 1− δ with appropriate choice of t below.

By Sub-Gaussianity of ε, we have the tail probability bound

P(‖XT ε‖∞ ≥ t) = P(max
j
|XTj ε| ≥ t)

≤ 2d exp

(
− t2

2nσ2

)
.

Therefore, by taking t =
√

2n log(2d)+σ
√

2n log(1/δ) = nτ , we get with probability at least 1− δ,
(4) ≤ 4nτ‖θ ∗ ‖1, which implies

‖Xθ̂L − Xθ̂∗‖22 ≤ 4nτ‖θ ∗ ‖1,

and it is the same as the bound in the theorem above with τ = σ

√
2 log(2d)

n + σ

√
2 log(1/δ)

n .

2.3 Fast rate for the LASSO

In order to obtain faster MSE bound for the LASSO, we need an additional assumption called
Incoherence defined as below.

Assumption 2 (Incoherecne). We say that the matrix X has incoherence k or denote it as INC(k)
for some integer k > 0 if ∥∥∥∥XTXn − Id

∥∥∥∥
∞
≤ 1

32k
,

where the ‖·‖∞ denotes the largest element of A in absolute sense.
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Note that this INC(k) is an approximate version of assumption ORT introduced in the last lecture,
and in case k → ∞, we can obtain ORT from INC(k). Recall that we needed d ≤ n in ORT.
However, INC allows d� n, which is more reasonable in high-dimensional situation.

We use this INC assumption to employ a Lemma that will be introduced below, and we will use
the Lemma to prove faster bound theorem for the LASSO. Let us take a look at the Lemma.

For any ∆ ∈ Rd, S ⊂ {1, . . . , d}, define ∆S to be the vector with coordinates

∆S,j =

{
∆j if j ∈ S
0 otherwise .

With this, we have ‖∆‖1 = ‖∆S‖1 + ‖∆Sc‖1, and the following Lemma holds.

Lemma 3. Fix a positive integer k ≤ d and assume that X satisfies assumption INC(k). Then, for
any S ∈ {1, . . . , d} such that |S| ≤ k and any ∆ ∈ Rd that satisfies the cone condition

‖∆Sc‖1 ≤ 3‖∆S‖1, (5)

it holds that

‖∆‖1 ≤ 2
‖X∆‖22
n

.

Note that in our proof of the fast rate of convergence, we will regard the difference between θ∗, and
θ̂L in our model as ∆.

For some intuition behind the conditions in this lemma, see Figures 7.2 and 7.6 in [2]. Let us now
prove the lemma.

Proof. By the definition of ∆S , we have

‖X∆‖22
n

=
‖X∆S‖22

n
+
‖X∆Sc‖22

n
+ 2∆T

S

XTX
n

∆S . (6)

We bound each of the three terms in the RHS of (6).

I. Firstly, it follows from the incoherence condition that

‖X∆S‖22
n

= ∆T
S

XTX
n

∆S = ‖∆S‖22 + ∆T
S

(
XTX
n
− Id

)
∆S ≥ ‖∆S‖22 −

‖∆S‖21
32k

. (7)

II. By the same arguent in I and the cone condition (5), we have

‖X∆Sc‖22
n

≥ ‖∆Sc‖22 −
‖∆Sc‖21

32k
≥ ‖∆Sc‖22 −

9‖∆S‖21
32k

. (8)

III. Finally, for the cross product term, by the incoherence condition and Cauchy-Swartz inequality,
we have

2∆T
S

XTX
n

∆S ≤
2

32k
‖∆S‖1‖∆Sc‖2 (9)

≤ 6

32k
‖∆S‖21, (10)
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where the last inequality holds by the cone condition (5).

Therefore, combining I, II, III and given the condition that |S| ≤ k, we have

‖X∆‖22
n

≥ ‖∆S‖22 + ‖∆Sc‖22 −
16|S|
32k
‖∆S‖22

≥ 1

2
‖∆‖22

One remark from this Lemma is that given the incoherence assumption, the cone condition implies
the strong positive curvature, and it is related to how much the LASSO solution is close to the true
parameter θ∗.

Now that we have Lemma 3, we are ready to prove the fast rate for the LASSO stated as below.

Theorem 4 (Fast rate of the LASSO). Fix n ≥ 2, and assume the linear model Y = Xθ∗ + ε,
where ε ∼ subGn(σ2). In addition, assume that ‖θ∗‖0 ≤ k and that X satisfies assumption INC(k).
Then the LASSO estimator θ̂L with τ such that

2τ = 8σ

√
log(2d)

n
+ 8σ

√
log(1/δ)

n
,

satisfies

MSE(Xθ̂L) =
1

n
‖Xθ̂L − Xθ∗‖22 . kσ2

log(2d/δ)

n
(11)

and

‖θ̂L − θ∗‖22 . kσ2
log(2d/δ)

n
(12)

with probability at least 1− δ.

Proof. Similar to the proof of Theorem1, by the definition of the LASSO estimate, we have

‖Y − Xθ̂L‖22 ≤ ‖Y − Xθ∗‖22 + 2nτ‖θ∗‖1 − 2nτ‖θ̂L‖1. (13)

By adding nτ‖θ̂L − θ∗‖1 on both sides of (13) and with some arranging of the equations after
plugging in Y = Xθ∗ + ε, we get

‖Xθ̂L − Xθ∗‖22 + nτ‖θ̂L − θ∗‖1 ≤ 2εTX(θ̂L − θ∗) + 2nτ‖θ̂L − θ∗‖1 + 2nτ‖θ∗‖1 − 2nτ‖θ̂L‖1. (14)

Let us remove the cross product term on the right hand side of (14). Once we apply Holder’s
inequality and use similar steps as in the proof of Theorem 1, with probability at least 1 − δ, we
get

εTX(θ̂L − θ∗) ≤ ‖εTX‖∞‖θ̂L − θ∗‖1
≤ nτ

2
‖θ̂L − θ∗‖1,
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where we used the fact that ‖Xj‖22 ≤ n+ 1/(32k) ≤ 2n. Thus, the cross product term cancels out
with the second term of the LHS of (14). Taking S = supp(θ∗), we get

(14) ≤ 2nτ‖θ̂L − θ∗‖1 + 2nτ‖θ∗‖1 − 2nτ‖θ̂L‖1
= 2nτ‖θ̂LS − θ∗‖1 + 2nτ‖θ∗‖1 − 2nτ‖θ̂LS‖1
≤ 4nτ‖θ̂LS − θ∗‖1,

where the first equality is from the fact that 2nτ‖θ̂L − θ∗‖1 = 2nτ‖θ̂LSc‖1 on Sc and the fact that

2nτ‖θ̂L − θ∗‖1 = 2nτ‖θ̂LS − θ∗‖1 on S and that 2nτ‖θ̂L‖1 = 2nτ‖θ̂LS‖1 + 2nτ‖θ̂LSc‖1. The last
inequality is from the triangle inequality.

In particular, we have ‖θ̂LSc − θ∗Sc‖1 ≤ 3‖θ̂LS − θ∗S‖1, because we have

nτ{‖θ̂LS − θ∗S‖1 + ‖θ̂LSc − θ∗Sc‖1} = nτ‖θ̂L − θ∗‖1
≤ ‖Xθ̂L − Xθ∗‖22 + nτ‖θ̂L − θ∗‖1.
≤ 4nτ‖Xθ̂LS − Xθ∗‖1
= 4nτ‖Xθ̂LS − Xθ∗S‖1.

Then, with ∆ = θ̂L− θ∗, it satisfies the cone condition (5). Thus, using the Lemma 3 and Cauchy-
Swartz inequality, since |S| ≤ k, we have

‖θ̂LS − θ∗‖1 ≤
√
|S|‖θ̂LS − θ∗‖2

≤
√
|S|‖θ̂L − θ∗‖2

≤
√

2k

n
‖Xθ̂L − Xθ∗‖2. (15)

Combining the result (15) with the fact that

‖Xθ̂L − Xθ∗‖22 ≤ ‖Xθ̂L − Xθ∗‖22 + nτ‖θ̂L − θ∗‖1 ≤ 4nτ‖θ̂LS − θ∗‖1 ≤ 4nτ

√
2k

n
‖Xθ̂L − Xθ∗‖2,

we eventually get

‖Xθ̂L − Xθ∗‖22 ≤

(
4nτ

√
2k

n

)2

≤ 32nτ2k,

which concludes the bound on MSE.

For the coefficient’s bound ‖θ̂L − θ∗‖22, we again Lemma 3 and get

‖θ̂L − θ∗‖22 ≤ 2MSE(Xθ̂L) ≤ 64kτ2. (16)
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In fact, we do not even need incoherence condition INC(k) for the bound in Theorem 4, but the
conclusion of Lemma 3,

inf
|S|≤k

inf
θ∈Cs

{
‖Xθ‖22
n‖θ‖22

≥ κ
}
,

where κ = 1/
2 and Cs is defined as CS = {‖θSc‖2 ≤ 3‖θS‖1}.

Eventually, the LASSO estimator (1) gives equivalent bound up to a constant C as the Hard/Soft
Thresholding estimators that we introduced in the last lecture.
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