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1 Overview

In the last lecture we proved both the weak and fast LASSO rates and introduced the inchorence
property to prove the fast LASSO rate.

In this lecture we discuss when we can achieve this incoherence property and conclude by introduc-
ing a theorem on oracle inequalities, using a dictionary of functions as opposed to a simple linear
model.

2 Main Section

Recall the Lasso estimator problem, we assume that our observed data Y ∈ Rn is generated
according to the following model,

Y = Xθ∗ + ϵ (1)

Where ||θ∗||0 ≤ k (i.e. θ∗ is sparse, having at most k non-zero terms). Under this assumption the
Lasso estimator is θ̂L such that,

θ̂L ∈ arg min
θ∈Rp

{
1

n
||Y − Xθ||22 + 2τ ||θ||1

}
(2)

We showed that if X satisfies the following,∣∣∣∣XTXn − Ip

∣∣∣∣
∞

≤ 1

32k
(3)

then it has the incoherence property denoted as INC(k) and using this INC(k) condition for X we
can prove the following theorem,

Theorem 1 (Fast Rate for Lasso). Fix n ≥ 2. Assume the linear model Y = Xθ∗ + ϵ holds
where ||ϵ||Ψ2 ≤ σ. Moreover assume that ||θ∗||0 ≤ k and that X satisfies INC(k). Then the Lasso
estimator with regularization parameter defined by

τ = Cσ

{√
log p

n
+

√
log(1/δ)

n

}
Then with probability 1− δ

1

n
||Xθ̂L − Xθ∗||22 ≲

σ2

n
||θ∗||0 log(p/δ)

We proved this theorem in the last lecture.
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Remark: In practice the value for σ is an unknown hyperparameter and can be adjusted using
cross validation.

2.1 Validity of Incoherence Assumption

The fast rate for Lasso estimators depends on this incoherence assumption. It is natural to ask if
this assumption makes sense for high dimensional problems when p >> n. For p < n as k → ∞
the incoherence assumption is equivalent to orthogonality of the matrix X. So here we show that
that there exists a matrix that satisfies INC(k) even for p > n.

We use a probabilistic method to prove this existence by finding a probability measure which assigns
positive probability to objects satisfying this property, implying that there must exist object that
satisfy said property. The proof is from Proposition 2.16 [1].

Proposition 2 (2.16). Let X ∈ Rn×p be a random matrix with iid entries Xij taking values in
{+1,−1} uniformly. Then the incoherence of X is k with probability 1− δ as long as

n ≳ k2 log(p/δ)

Proof. To show INC(k) we need that,

∣∣∣∣∣∣∣∣XTXn − I

∣∣∣∣∣∣∣∣
∞

≤ 1

32k

To prove this statement we will show that the diagonals of 1
n [X

TX]jj are close to 1 and that the
off-diagonals 1

n [X
TX]ij are all close to 0.

We start by showing that the diagonals of XTX
n are close to 0 notice that the jth diagonal term is

1

n

n∑
i=1

X2
ij

Since each Xij ∈ {+1,−1} we have that 1
n

∑n
i=1X

2
ij = 1. Therefore,

∣∣∣∣∣∣∣∣(XTX)jjn
− 1

∣∣∣∣∣∣∣∣
∞

= 0 ≤ 1

32k

For the off-diagonals where i ̸= j, (
XTX
n

)
ij

=
1

n

n∑
ℓ=1

XℓiXℓj

Since Xℓi and Xℓj are independent and uniform we have that their product is also a uniform random
variable taking values {+1,−1} and thus it is a bounded random variable so it has subgaussian
norm ||XℓiXℓj ||ψ2 ≲ 1
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Therefore we just need to show that the probability that the off-diagonals are close to 0 is high,

P
(∣∣∣∣∣∣∣∣XTXn − I

∣∣∣∣∣∣∣∣
∞

> t

)
= P

(
max
i ̸=j

∣∣∣∣∣ 1n
n∑
ℓ=1

XℓiXℓj

∣∣∣∣∣ > t

)

≤
∑
i ̸=j

P

(∣∣∣∣∣ 1n
n∑
ℓ=1

XℓiXℓj

∣∣∣∣∣ > t

)
(Union Bound)

Now 1
n

∑n
ℓ=1XℓiXℓj is a sum of independent subgaussain random variables with mean 0 so we can

apply Hoeffding’s inequality to get,

∑
i ̸=j

P

(∣∣∣∣∣ 1n
n∑
ℓ=1

XℓiXℓj

∣∣∣∣∣ > t

)
≤
∑
i ̸=j

2 exp

(
−(nt)2

2n

)

≤ 2p2 exp

(
−(nt)2

2n

)

If we let t = 1
32k then,

P
(∣∣∣∣∣∣∣∣XTXn − I

∣∣∣∣∣∣∣∣
∞

>
1

32k

)
≤ 2p2 exp

(
−(n/32k)2

2n

)
And,

2p2 exp

(
−(n/32k)2

2n

)
≤ δ

For n ≳ k2 log(p/δ)

3 Oracle Inequalities

Sometimes the assumption that your data comes from the linear model y = Xθ∗ + ϵ is to strong of
an assumption.

Instead let’s assume the data is generated by some arbitrary function f(x) so that the model
becomes,

Yi = f(Xi) + ϵi (4)
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Now consider a dictionary of functions H = {φ1, ..., φM} where φj : Rp → R. And we want to
estimate the unknown f using a linear combination of the functions in the dictionary.

f ≈ φθ :=

M∑
j=1

θjφj (5)

The vector φθ(Xi) ∈ Rn is defined as,

φθ(Xi) :=
M∑
j=1

θjφj(Xi) (6)

So again we can use the same MSE to find our LASSO estimator,

θ̂L ∈ arg min
θ∈Rm

{
1

n

n∑
i=1

(Yi − φθ(Xi))
2 + 2τ ||θ||1

}
(7)

We will present an oracle inequality for the Lasso estimator similar to what we showed earlier.
Recall that to prove the fast Lasso estimator rate we needed the incoherence property. For this
setting define the matrix Φ ∈ Rn×M with elements Φij = φj(Xi). The incoherence property is
then,

INC(k) :

∣∣∣∣∣∣∣∣ΦTΦn − Im

∣∣∣∣∣∣∣∣
∞

≤ 1

32k
(8)

Under this condition we have the following theorem from [1]

Theorem 3. Assume that ||ϵ||ψ2 ≤ σ and let Φ have INC(k) then if,

τ = Cσ

{√
logM

n
+

√
log 1/δ

n

}
(9)

and ||θ∗||0 ≤ k then with probability 1− δ.

1

n
||φθ̂L − f ||22 ≲ inf

θ∈RM ,||θ||0≤k

{
1

n
||φθ − f ||22 +

σ2

n
||θ||0 log(M/δ)

}
(10)
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