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1 Overview

In the last lecture we gived the analysis of Lasso estimator for sparse linear regression. In this
lecture we will wrap up the analysis and then generalize the setting to sparse oracle inequality.

2 Main Section

2.1 Lasso estimator on sparse linear regression

First recall our definition for Lasso estimator

Definition 1. Let X ∈ Rn×p be n samples on Rp and y ∈ Rn be the labels. We define the Lasso
estimator as

θ̂L ∈ argminθ∈Rp{
1

n
‖Y − Xθ‖22 + 2τ‖θ‖1}

Then recall the definition for Incoherence

Definition 2. We say the matrix X has incoherence k and denote it as INC(k) for integer k > 0 if∥∥∥∥XTXn − Id
∥∥∥∥
∞
≤ 1

32k

Note we need the incoherence assumption for Fast rate of Lasso estimator.

Theorem 3. Under INC(k) assumption, with

τ = Cσ

(√
log p

n
+

√
log(1/δ)

n

)

then with probability 1− δ
1

n
‖Xθ̂L − Xθ∗‖22 .

σ2‖θ∗‖0 log(p/δ)

n

The proof has already been discussed in note for Lecture 37.

Proposition 4 (Proposition 2.16 in [1]). Let X ∈ {±1}n×p be a random matrix such that entries
are i.i.d Rademacher (±1) random variables. The incoherence of X is k w.p. 1− δ as long as

n & k2 log(p/δ)
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Proof. For diagonal entries, (
XTX
n

)
j,j

=
1

n

n∑
i=1

X2
i,j = 1

Thus XTX
n − Ip is 0 on the diagonal.

For non-diagonal entries, (
XTX
n

)
i,j

=
1

n

n∑
l=1

Xl,iXl,j

Note Xl,iXl,j is also Rademacher random variable which is subgaussian, thus ‖
∑n

l=1Xl,iXl,j‖ψ2 . n.
Therefore concentration and an union bond on non-diagonal entries, we have

P(‖X
TX
n
− Ip‖∞ >

1

32k
) ≤

∑
i 6=j∈[p]

P(
1

n

n∑
l=1

Xl,iXl,j >
1

32k
) ≤ p2 exp(−Cn

k2
)

Take the value equal to δ gives the proposition.

2.1.1 Lasso estimator on sparse oracle equality

The setting of the problem is the following. Let φ1, · · · , φm : X 7→ R be a set of dictionary functions
and θ ∈ Rm be a k-sparse vector. We will use φθ to denote φθ =

∑m
i=1 θiφi. We assume the true

concept is f = φθ∗ and assume we observe X and Y such that

Yi = f(Xi) + εi, i = 1, · · · , n
where and ε is a subgaussian with variance proxy σ2.

For any estimator f̂ , we define the mean squared error as

MSE(f̂) =
1

n

n∑
i=1

(f(Xi)− f̂(Xi))
2

In this setting, we can reduce the problem to sparse linear regression by considering the matrix Φ
with i-th row equal to [φ1(Xi), · · · , φm(Xi)]. We define the Lasso estimator θ̂L for θ∗ as

θ̂L ∈ argminθ∈Rm{
1

n
‖Y − Φθ‖22 + 2τ‖θ‖1}

Therefore the same analysis for Lasso estimator can also be applied here.

Theorem 5 (Theorem 3.5 in [1]). Under INC(k) assumption (‖X′TX′
n − Im‖∞ ≤ 1

32k ), with

τ = Cσ

(√
logm

n
+

√
log(1/δ)

n

)
Let f̂ = φθ̂Lthen with probability 1− δ

1

n

n∑
i=1

(f(Xi)− f̂(Xi))2 .
σ2‖θ∗‖0 log(m/δ)

n

and

MSE(φθ̂) . inf
θ∈Rm,‖θ‖0≤k

(MSE(φθ) +
σ2‖θ‖0 log(m/δ)

n
)

The proof of the above is similar to that of Theorem 3 and is omitted.
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