MATH888: High-dimensional probability and statistics

Fall 2021

Lecture 39 — December 8, 2021

Sebastien Roch, UW-Madison

Scribe: Joowon Lee, Sebastien Roch

1 Overview

Community recovery remains a popular research area in statistical network analysis, where we seek to find a latent community structure in a network. This technique has been applied to many real-world networks from various scientific domains such as social, biological, physical, and economic contexts. A statistical guarantee should necessarily assume some underlying random graph model. In this lecture, we introduce community recovery under the framework of Stochastic Block Model (SBM), which is a multi-community generalization of the well-known Erdös-Renyí random graph. Specifically, we examined conditions for recovery by conveying relevant notions and investigated a desired estimator for recovery.

This lecture is based on [Abb18].

2 The Stochastic Block Model

Let us consider a simple case with two (strictly) balanced communities.

2.1 Definition

We consider a random graph model on n (even) nodes where there are two communities, say, +1 and -1, each consisting of n/2 nodes. For two nodes (i, j), we randomly assign an edge between them with probability q_{in} if they belong to the same community, and with probability q_{out} otherwise. Then, the following 2×2 matrix describes the edge density within and across the two communities:

$$W = \begin{pmatrix} +1 & -1 \\ +1 & q_{in} & q_{out} \\ -1 & q_{out} & q_{in} \end{pmatrix}.$$

Since nodes belonging to the same community should be more likely to share an edge (at least in some applications), we assume $q_{in} \geq q_{out}$. Let SBM (n, q_{in}, q_{out}) denote the resulting random graph model, which is a probability distribution on the set of all n-node simple graphs. Namely, the model defines an n-vertex random graph with vertices split in two communities, where each vertex is assigned a community label in $\{1, -1\}$ independently under the community prior (q_{in}, q_{out}) , and pairs of vertices with labels i and j connect independently with probability $W_{i,j}$ where $i, j \in \{+1, -1\}$.

More specifically, we say that $(X,G) \sim \mathrm{SBM}(n,q_{in},q_{out})$ if

1. $[Community \ assignment] \ X$ is uniformly random over

$$\Pi_2^n := \{ \mathbf{x} \in \{+1, -1\}^n : \mathbf{x}^T \mathbf{1} = 0 \} \text{ where } \mathbf{1} = (1, \dots, 1)^T$$

which indicates the number of +1 and -1 cases is the same (balanced).

2. [Graph] G has independent edges where (i,j) is present with probability W_{X_i,X_j} for $\forall i \neq j$.

2.2 Recovery Requirement

The goal of community detection is to estimate (recover) the labels X by observing G. We define the notions of agreement.

Definition 1. (Agreement) The agreement between two community vectors $\mathbf{x}, \mathbf{y} \in \{+1, -1\}^n$ is obtained by maximizing the common components between \mathbf{x} and any relabelling of \mathbf{y} , i.e.,

$$A(\mathbf{x}, \mathbf{y}) = \max_{s \in \{+1, -1\}} \frac{1}{n} \sum_{i=1}^{n} \mathbf{1} \{ x_i = s(y_i) \}$$

Now consider the following recovery requirements, which is going to be asymptotic, taking place with high probability as n tends to infinity.

Definition 2. Let $(X,G) \sim SBM(n,q_{in},q_{out})$ and for $\hat{X} = \hat{X}(G) \in \Pi_2^n$, an estimate of X, we say that we achieve

- **Exact recovery:** $\mathbb{P}(A(X, \hat{X}) = 1) = 1 o(1)$
- Almost exact recovery: $\mathbb{P}(A(X,\hat{X}) = 1 o(1)) = 1 o(1)$

Then when is it possible to achieve (almost) exact recovery? The following theorem provides the conditions of q_{in} and q_{out} for exact recovery.

Theorem 3. Exact recovery in $SBM(n, \alpha \log(n)/n, \beta \log(n)/n)$ is achievable and efficiently so if and only if $\sqrt{\alpha} - \sqrt{\beta} > 2$ and not achievable if $\sqrt{\alpha} - \sqrt{\beta} < 2$.

2.3 MAP estimator

A natural starting point is to resolve the estimation of X from the noisy observation G by taking the Maximum A Posteriori (MAP) estimator.

Let $\Omega(X)$ be the partition corresponding to X and $\hat{\Omega}(G)$ be the partition corresponding to $\hat{X}(G)$. The probability of error (not recovering the true partition), \mathbb{P}_e , is given by

$$\mathbb{P}_e := \mathbb{P}(\Omega \neq \hat{\Omega}(G)) = \sum_g \mathbb{P}(\hat{\Omega}(g) \neq \Omega | G = g) \mathbb{P}(G = g),$$

and an estimator $\hat{\Omega}^{MAP}(\cdot)$ minimizing the above must minimize $\mathbb{P}(\hat{\Omega}(g) \neq \Omega | G = g)$ for every g. To minimize $\mathbb{P}(\hat{\Omega}(g) \neq \Omega | G = g)$, we need to choose ω that maximizes the posterior probability

$$\begin{split} \mathbb{P}(\Omega = \omega | G = g) &= \frac{\mathbb{P}(G = g | \Omega = \omega) \mathbb{P}(\Omega = \omega)}{\mathbb{P}(G = g)} \quad (\because \text{Bayes rule}) \\ &\propto \mathbb{P}(G = g | \Omega = \omega) \mathbb{P}(\Omega = \omega) \\ &\propto \mathbb{P}(G = g | \Omega = \omega) \quad \left(\because \mathbb{P}(G = g | \Omega = \omega) = \frac{1}{\# \text{ of partitions}} \right) \end{split}$$

Then MAP is thus equivalent to the Maximum Likelihood estimator: maximize $\mathbb{P}(G = g | \Omega = \omega)$ over equal size partitions ω .

For fixed g, let N := N(g) be the number of edges in g. For any ω , denote $N_{in} := N_{in}(g, \omega)$ and $N_{out} := N_{out}(g, \omega)$ by the number of edges within and across communities, respectively, and note that $N_{in} = N - N_{out}$. Then

$$\mathbb{P}(G = g | \Omega = \omega) = (q_{out})^{N_{out}} (1 - q_{out})^{(\frac{n}{2})^2 - N_{out}} (q_{in})^{N - N_{out}} (1 - q_{in})^{\{(\frac{n}{2}) - (\frac{n}{2})^2\} - \{N - N_{out}\}\}}$$

$$\propto \left[\frac{q_{out}}{1 - q_{out}} \times \frac{1 - q_{in}}{q_{in}} \right]^{N_{out}}$$

Since we assume $q_{in} \geq q_{out}$, we have $\left[\frac{q_{out}}{1-q_{out}} \times \frac{1-q_{in}}{q_{in}}\right] \leq 1$. Therefore, to maximize $\mathbb{P}(G=g|\Omega=\omega)$, we need to choose ω that minimizes N_{out} . In this sense, MAP is equivalent to solving the *min-bisection problem*.

Alternatively, the same problem can be written as follows:

$$\max_{\mathbf{x} \in \{+1,-1\}^n, \mathbf{x}^T \mathbf{1} = 0} \mathbf{x}^T A \mathbf{x}$$

where A is $n \times n$ adjacency matrix. Due to the constraint of $\mathbf{x}^T \mathbf{1} = 0$, it is reasonable to take the second largest eigenvector of A for an appropriate relaxation of MAP. This will be discussed this in more detail next time.

References

[Abb18] Emmanuel Abbe. Community Detection and Stochastic Block Models. Foundations and Trends® in Communications and Information Theory, 14(1-2):1–162, June 2018. Publisher: Now Publishers, Inc.