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1 Overview

Community recovery remains a popular research area in statistical network analysis, where we seek
to find a latent community structure in a network. This technique has been applied to many real-
world networks from various scientific domains such as social, biological, physical, and economic
contexts. A statistical guarantee should necessarily assume some underlying random graph model.
In this lecture, we introduce community recovery under the framework of Stochastic Block Model
(SBM), which is a multi-community generalization of the well-known Erdös-Renýı random graph.
Specifically, we examined conditions for recovery by conveying relevant notions and investigated a
desired estimator for recovery.

This lecture is based on [Abb18].

2 The Stochastic Block Model

Let us consider a simple case with two (strictly) balanced communities.

2.1 Definition

We consider a random graph model on n (even) nodes where there are two communities, say, +1 and
−1, each consisting of n/2 nodes. For two nodes (i, j), we randomly assign an edge between them
with probability qin if they belong to the same community, and with probability qout otherwise.
Then, the following 2×2 matrix describes the edge density within and across the two communities:

W =

+1 −1[ ]
+1 qin qout
−1 qout qin

.

Since nodes belonging to the same community should be more likely to share an edge (at least
in some applications), we assume qin ≥ qout. Let SBM(n, qin, qout) denote the resulting random
graph model, which is a probability distribution on the set of all n-node simple graphs. Namely,
the model defines an n-vertex random graph with vertices split in two communities, where each
vertex is assigned a community label in {1,−1} independently under the community prior (qin, qout),
and pairs of vertices with labels i and j connect independently with probability Wi,j where i, j ∈
{+1,−1}.

More specifically, we say that (X,G) ∼ SBM(n, qin, qout) if
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1. [Community assignment] X is uniformly random over

Πn
2 := {x ∈ {+1,−1}n : xT1 = 0} where 1 = (1, · · · , 1)T

which indicates the number of +1 and −1 cases is the same (balanced).

2. [Graph] G has independent edges where (i, j) is present with probability WXi,Xj for ∀i 6= j .

2.2 Recovery Requirement

The goal of community detection is to estimate (recover) the labels X by observing G. We define
the notions of agreement.

Definition 1. (Agreement) The agreement between two community vectors x,y ∈ {+1,−1}n is
obtained by maximizing the common components between x and any relabelling of y, i.e.,

A(x,y) = max
s∈{+1,−1}

1

n

n∑
i=1

1{xi = s(yi)}

Now consider the following recovery requirements, which is going to be asymptotic, taking place
with high probability as n tends to infinity.

Definition 2. Let (X,G) ∼ SBM(n, qin, qout) and for X̂ = X̂(G) ∈ Πn
2 , an estimate of X, we say

that we achieve

• Exact recovery: P(A(X, X̂) = 1) = 1− o(1)

• Almost exact recovery: P(A(X, X̂) = 1− o(1)) = 1− o(1)

Then when is it possible to achieve (almost) exact recovery? The following theorem provides the
conditions of qin and qout for exact recovery.

Theorem 3. Exact recovery in SBM(n, α log(n)/n, β log(n)/n) is achievable and efficiently so if
and only if

√
α−
√
β > 2 and not achievable if

√
α−
√
β < 2.

2.3 MAP estimator

A natural starting point is to resolve the estimation of X from the noisy observation G by taking
the Maximum A Posteriori (MAP) estimator.

Let Ω(X) be the partition corresponding to X and Ω̂(G) be the partition corresponding to X̂(G).
The probability of error (not recovering the true partition), Pe, is given by

Pe := P(Ω 6= Ω̂(G)) =
∑
g

P(Ω̂(g) 6= Ω|G = g)P(G = g),
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and an estimator Ω̂MAP (·) minimizing the above must minimize P(Ω̂(g) 6= Ω|G = g) for every g.
To minimize P(Ω̂(g) 6= Ω|G = g), we need to choose ω that maximizes the posterior probability

P(Ω = ω|G = g) =
P(G = g|Ω = ω)P(Ω = ω)

P(G = g)
(∵ Bayes rule)

∝ P(G = g|Ω = ω)P(Ω = ω)

∝ P(G = g|Ω = ω)

(
∵ P(G = g|Ω = ω) =

1

# of partitions

)

Then MAP is thus equivalent to the Maximum Likelihood estimator: maximize P(G = g|Ω = ω)
over equal size partitions ω.

For fixed g, let N := N(g) be the number of edges in g. For any ω, denote Nin := Nin(g, ω) and
Nout := Nout(g, ω) by the number of edges within and across communities, respectively, and note
that Nin = N −Nout. Then

P(G = g|Ω = ω) = (qout)
Nout(1− qout)(

n
2
)2−Nout(qin)N−Nout(1− qin){(

n
2)−(

n
2
)2}−{N−Nout}

∝
[

qout
1− qout

× 1− qin
qin

]Nout

Since we assume qin ≥ qout, we have
[

qout
1−qout ×

1−qin
qin

]
≤ 1. Therefore, to maximize P(G = g|Ω = ω),

we need to choose ω that minimizes Nout. In this sense, MAP is equivalent to solving the min-
bisection problem.

Alternatively, the same problem can be written as follows:

max
x∈{+1,−1}n,xT 1=0

xTAx

where A is n× n adjacency matrix. Due to the constraint of xT1 = 0, it is reasonable to take the
second largest eigenvector of A for an appropriate relaxation of MAP. This will be discussed this
in more detail next time.
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