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1 Overview

Community recovery remains a popular research area in statistical network analysis, where we seek
to find a latent community structure in a network. This technique has been applied to many real-
world networks from various scientific domains such as social, biological, physical, and economic
contexts. A statistical guarantee should necessarily assume some underlying random graph model.
In this lecture, we introduce community recovery under the framework of Stochastic Block Model
(SBM), which is a multi-community generalization of the well-known Erdds-Renyi random graph.
Specifically, we examined conditions for recovery by conveying relevant notions and investigated a
desired estimator for recovery.

This lecture is based on [Abb18].

2 The Stochastic Block Model

Let us consider a simple case with two (strictly) balanced communities.

2.1 Definition

We consider a random graph model on n (even) nodes where there are two communities, say, +1 and
—1, each consisting of n/2 nodes. For two nodes (i, j), we randomly assign an edge between them
with probability g¢;, if they belong to the same community, and with probability ¢, otherwise.
Then, the following 2 x 2 matrix describes the edge density within and across the two communities:

+1 -1
W = +1 |:Qin QOut:| .
-1 Qout Qin

Since nodes belonging to the same community should be more likely to share an edge (at least
in some applications), we assume @in > Gout- Let SBM(n, ¢in, Gout) denote the resulting random
graph model, which is a probability distribution on the set of all n-node simple graphs. Namely,
the model defines an n-vertex random graph with vertices split in two communities, where each
vertex is assigned a community label in {1, —1} independently under the community prior (gin, Gout),
and pairs of vertices with labels 7 and j connect independently with probability W; ; where i, j €
{+1,-1}.

More specifically, we say that (X, G) ~ SBM(n, ¢in, qout) if



1. [Community assignment] X is uniformly random over
ni={x € {+1,-1}":x"1 = 0} where 1 = (1,--- ,1)T
which indicates the number of +1 and —1 cases is the same (balanced).

2. [Graph] G has independent edges where (i, j) is present with probability W, x, for Vi # j .

2.2 Recovery Requirement

The goal of community detection is to estimate (recover) the labels X by observing G. We define
the notions of agreement.

Definition 1. (Agreement) The agreement between two community vectors x,y € {+1,—1}" is

obtained by maximizing the common components between x and any relabelling of y, i.e.,

1
A = —
(xy) =  max o

Z W = s(y:)}
=1

Now consider the following recovery requirements, which is going to be asymptotic, taking place
with high probability as n tends to infinity.

Definition 2. Let (X,G) ~ SBM(n, Gin, Qout) and for X = X(G) € 115, an estimate of X, we say
that we achieve

e Ezact recovery: P(A(X,X)=1)=1—o0(1)

e Almost exact recovery: P(A(X,X)=1—o0(1)) =1—o(1)
Then when is it possible to achieve (almost) exact recovery? The following theorem provides the
conditions of g, and g, for exact recovery.

Theorem 3. Ezact recovery in SBM(n,alog(n)/n, 3log(n)/n) is achievable and efficiently so if
and only if /o — /B > 2 and not achievable if \/oa — /B < 2.

2.3 MAP estimator

A natural starting point is to resolve the estimation of X from the noisy observation G by taking
the Maximum A Posteriori (MAP) estimator.

Let ©(X) be the partition corresponding to X and Q(G) be the partition corresponding to X (G).
The probability of error (not recovering the true partition), P, is given by

Pe :=P(Q # Q(G)) = Y P(Qg) # Q|G = 9)P(G = g),



minimizing the above must minimize P(Q(g) # Q|G = g) for every g.
To minimize P(Q(g) # Q|G = g), we need to choose w that maximizes the posterior probability

and an estimator QMAP(.)

P = ]G = g) = G = gI\Pf(lezw)ﬁ(Q —w)

x P(G=g|Q=w)P(Q=w)

(".- Bayes rule)

1

x P(G = g|Q? = w) ( P(G=g|Q=w) = #ofpartitions)

Then MAP is thus equivalent to the Maximum Likelihood estimator: maximize P(G = ¢|Q? = w)
over equal size partitions w.

For fixed g, let N := N(g) be the number of edges in g. For any w, denote N, := N;;,(g,w) and
Nout := Nout(g,w) by the number of edges within and across communities, respectively, and note
that N;;, = N — Nyyi. Then

P(G = Q‘Q = W) = (QOut)NOUt(l - QOut)(%)Q_NOM(qm)N_NOUt(l - Qin){(g)_(%)2}_{N_Nom}

NOU.,
x |: Qout « 1—Qm] ¢
1- Qout qin

Since we assume ¢;, > ¢out, We have [% X 1;#} < 1. Therefore, to maximize P(G = g|Q = w),
we need to choose w that minimizes N,,:. In this sense, MAP is equivalent to solving the min-

bisection problem.

Alternatively, the same problem can be written as follows:

max xT Ax
x€{+1,—-1}7xT1=0

where A is n x n adjacency matrix. Due to the constraint of x71 = 0, it is reasonable to take the
second largest eigenvector of A for an appropriate relaxation of MAP. This will be discussed this
in more detail next time.
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