MATHS888: High-dimensional probability and statistics Fall 2021

Lecture 4 — September 15, 2021
Sebastien Roch, UW-Madison Scribe: Ajinkya Kokandakar

1 Overview

The previous lecture reviewed important concepts in classical probability theory, and introduced
the loss function and the risk function that constitute the basic framework for the comparison of
estimators. Intuitively, the idea behind the loss function is to measure how close the estimator is
to the true (but unknown) value of the target parameter by endowing the parameter space with a
semi-metric.

The main topic of this lecture is the Cramér-Rao Bound, which is a lower bound for the variance
of unbiased estimators for a target parameter.

2 Basic Framework and Notation : A review

We suppose that there is a abstract probability space (€2, F) which is the source of all randomness.
However, we are only concerned with samples X1, Xo, ..., X, that take values in the sample space
denoted X. In measure theoretic terms, a sample X is a random variable X : (Q,F) — (X, B).
For our purposes, X C RP. The samples are drawn from a fixed but unknown distribution on the
sample space, and our goal is to estimate functions of this distribution. With this as our objective,
we use the following framework for the discussion in this lecture:

o Family of distributions — There is a family of distributions P over the sample space, which
contains the true distribution P, i.e. P € P.

e Parameter — We are interested in estimating a function of the distribution 6 : P — © where
© is the parameter space. In parametric families, we are typically interested in estimating a
parameter of the distribution. For example, we might consider the family of normal distribu-
tions parameterized by mean p and variance o2 and we are interested in making inferences
about the mean u. Notice that p =B, ,2)(X) = [p 2 dP, 52y (x) = p(P,+2)), and is thus a
function of the underlying (true) probability measure.

e Data — The data consists of a sequence of n i.i.d samples, {X;}", Xpep

e Estimator — An estimator (™ = g (X1,X2,...,X,) is a function that maps the data to
the parameter space i.e. 60 . xm — ©. An estimator is understood to be a function of
the sample and hence we only write 6. Moreover, we often drop the superscript in the
estimator (™ and simply use 6 instead.

Remark 1. The expectation and variance of a random variable Z are denoted as E[Z] and var(Z).
If we need to specify the distribution of the samples from P, we use Pp(-),Ep(-) and varp(-) for the
probability, expected value and variance under the distribution P respectively.



2.1 Mean squared error and the Bias-Variance tradeoff

Recall the definition of the bias of an estimator from the previous lecture:
Definition 2. The bias of an estimator is defined as:
biasp(0,0) = Ep[d — 0(P)].

A~

When the distribution P and parameter 6 are obvious from the context, we write bias(6) for ease of
notation. Positive bias indicates that the estimator provides an over-estimate the target parameter
on average. All else equal, we typically prefer to have zero bias, which motivates the following
definition.

Definition 3 (Unbiasedness). An estimator 0 is said to be unbiased if bias(0,60) = 0 for all P € P.

It is important to note that an unbiased estimator must have zero bias for all possible distributions,
for the following reason: for any given estimator we can usually find some distribution under which
the estimator has zero bias. For example, for some ¢ € R, the constant estimator 6 = ¢ has zero
bias for any P with §(P) = ¢, but this is hardly a useful estimator for any P that leads to a different
value of 6.

Definition 4 (MSE, Panaretos [1] Def 3.3). The mean squared error (MSE) is defined as:
MSEp(6) = E[|0 - 6(P)|?]
where ||-|| is the L? norm.

For brevity we use MSE(#) when the distribution and the parameter are unambiguous. It is clear
that the MSE satisfies the definition of a risk function given in the previous lecture.

The following lemma expresses the the MSE of an estimator in terms of its bias and variance.

Lemma 5 ([1], Lemma 3.4). Let 6 € RP be an estimator for a p-dimensional parameter ¢, and
0 € R denote the k-th component of 0, i.e. 0 = (01,0, ... ,GP)T, then the following always holds:

MSE(f) = ||bias(8) || + Zvarp(ék).
k=1

This result is called the bias-variance decomposition.

Proof. We only prove the bias-variance decomposition for the case p = 1. By the definition of MSE,
MSE(f) = E[(0 — 6)]
— E[(§ — E[6] + E[§] — 0)?
= E[(0 — E[9])°] + E[(E[] — 6)*] + 2E[(9 — E[6])(E[9] — 0)]

= var(f) + E[bias(9)?] + 2(E[d] — 6) E[(0 — E[A))]
=0

= bias(0)? + var(6)

which concludes the proof.



We define another impotant notion in classical statistics in the following definition.

Definition 6 (Consistency). A sequence of estimators {00} is consistent if 2Py 9 asn — oo
for all P € P.

Lemma 7. For any e > 0,
< MSE(0)

P16 -0l > 2) <~

Proof. Let Z = Hé — 62, then using Markov’s inequality with Z and ¢ = 2 we get:

B0 — 0] > <) = B(I0 — 0]]* > %) < *.)

which is the required inequality. O

The following corollary is a direct consequence of the above lemma.

Corollary 8. A sequence of estimators 6 s consistent if MSE(é(")) — 0 as n — oo.

We can reduce the mean squared error by either reducing the bias, the variance or both. It is easy
to see that the mean squared error of an unbiased estimator is the variance itself. Therefore, when

comparing among the class of unbiased estimators we only need to care about the variance of the
estimators. This motivates the Cramér-Rao bound in the next section.

3 Cramér-Rao Bound

The Cramér-Rao bound is a lower bound for the variance of any unbiased estimators of a parameter
of interest under certain regularity conditions. A lower bound is useful because it provides a
benchmark to compare estimators against. If an estimator achieves the lower bound, it is optimal
in the sense that no other unbiased estimator can have a lower variance. An estimator that achieves
the lower bound is therefore “efficient” in the sense that it has the least possible variance.

In this section we consider the special case of the Cramér-Rao bound for random variables that can
take only finitely many (real) values. For a more general result that applies to random variables in
RP, see Theorem 6.6 in Lehmann and Casella [2].

For the theorem that follows consider the following setup:

e The sample space X is finite, i.e. |X] < oco.

e The parameter space ©® C R is an open set in the real line

e The family of distribution consists of discrete distributions indexed by € such that
P={p(-;0) : 00}

where p(x,6) > 0 and p(x, 0) is continuously differentiable in 0 for all z € X.



Suppose we have a sample {X;}7 ; ~ p(+; 0) as described above, then we have the following theorem:

Theorem 9. If 9, n € N is a sequence of unbiased estimators for g() i.e. E[0™] = g(0) for
alln € N, where g : R — R is a continuously differentiable function, then:

var() > —— lg'(6))? i
nE [ log p(X1;6)]

where E [% log p(X71; 0)]2 =: 1(0) is called the Fisher Information for 6.

To understand the lower bound, note that:

Ip(z;0)
1(0) := [ g ; log p(z; 9)] [p (2? 9)]

Thus the Fisher information quantifies the expected relative rate of change of the likelihood in
response to a small change in 6. If this quantity is larger, it is easier to distinguish the likelihood
functions that induce different values of 6, i.e. it is easier to distinguish between different value of
6. Tt is in this sense, that I(f) captures “information” about the parameter 6, and therefore the
name “information” matrix. The larger the information matrix, the easier it is to discern between
different parameter values and the more information we have about the parameter. Notice that a
larger Fisher information value corresponds to a lower Cramér-Rao bound. A note of caution is
due at this point: the Cramér-Rao bound is not a sharp lower bound, which means that there may
not exist any unbiased estimator that achieves this lower bound.
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