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1 Overview

In the last lecture we reviewed some important facts in probability theory and then considered a
more general context for comparing estimators. In this lecture we will redefine a few notations and
study the Bias-variance decomposition and Cramer-Rao bound.

2 Notations

We make slight adjustments to notations in this lecture. We simplify them and redefine as follows:

1. We have a family of distributions P over a sample space X . We will assume everything is
measurable.

2. Parameter θ : P → Θ, where Θ is the parameter space.

3. We are provided with the data: n i.i.d X -valued X1, X2, . . . , Xn ∼ P ∈ P

4. We define the estimator: θ̂n : X n → Θ

Remark 1. All events and random variables are over a Probability space (Ω,F ,P). P is the underly-
ing measure of the joint probability space. P is the distribution if one of the samples X1, X2, . . . , Xn.
The expectation and variance of Z is denoted by E[Z] and Var(Z) respectively. If need to specify
the distribution of samples P , we use a sub-script. PP , EP , VarP . The Pp is defined on an event,
the EP , VarP are defined over some function of Xi’s.

Remark 2. We often drop the superscript of θ̂n. That is we will write θ̂.

Definition 3. We define the following definitions which are taken from [Pan16]

(a) The bias of θ̂ is biasP ( ˆtheta, θ) = EP [θ̂ − θ]. For short we will write bias(θ̂). Bias is positive
if you over-estimate and negative if you under-estimate. It is not a metric as such.

(b) The mean squared error (MSE) of θ̂ is

MSEP (θ̂, θ) = EP (‖θ̂ − θ‖2).

For short we will write MSEP (θ̂).
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3 Bias-Variance Decomposition [Pan16], (Lemma 3.4)

We introduce the notation θ̂ = (θ̂, . . . , θ̂p) ∈ Rp is a p-dimensional vector. Then we have

MSE(θ̂) = ‖ bias(θ̂)‖22 +

p∑
k=1

Var(θ̂).

Proof. The proof is for p = 1. We have that

E(θ̂, θ) = E(θ̂ − E(θ̂) + E(θ̂)− θ)2

= E[(E(θ̂)− θ)2]︸ ︷︷ ︸
bias(θ̂)

+E(θ̂ − E(θ̂))2︸ ︷︷ ︸
Var(θ̂,θ)

+2E[(θ̂ − E(θ̂))(E(θ̂)− θ)︸ ︷︷ ︸
Term (a)

]

where the term (a) is deterministic and E(θ̂)− θ = 0. Hence we get the result.

Definition 4. We say that θ̂(n), n ≥ 1 is consistent if θ̂n → θ as n
P→ ∞, where

P→ means
convergence in probability.

Lemma 5. We can show that P[‖θ̂ − θ‖22 > ε] ≤ MSE(θ̂)

ε2
. This implies consistency if

MSE(θ̂n)→ 0.

Proof. Let Z = ‖θ̂ − θ‖22. So Z is a random variable and positive. Using Markov’s inequality we
can show that

P(‖θ̂ − θ‖22 > ε2) ≤ E(‖θ̂ − θ‖22)
ε2

.

Note that MSE(θ̂) = ‖θ̂ − θ‖22. Hence the claim of the lemma follows.

Definition: We define an unbiased estimator if biasP (θ̂, θ) = 0, ∀θ, P .

4 Cramer-Rao Bound (Special case)

We now prove the Cramer-Rao bound for the special case when dimension p = 1. For the multi-
dimensional general case see Thm 6.6 in [LC06].

First we define the following setting required for this proof:

(a) X is finite.

(b) Θ ⊆ R is open

(c) P = {P (·; θ) : θ ∈ Θ} where P(X = x) = P (x; θ)

(d) P (x; θ) is continuously differentiable for all x wr.t. θ
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(e) P (x; θ) > 0.

Theorem 6. Let θ̂ be an unbiased estimator of g(θ) where g : R→ R is continuously differentiable.
Then

V ar(θ̂) ≥ (g′(θ))2

nE
[(

∂
∂θ logP (X1; θ)

)2]
where E

[(
∂
∂θ logP (X1; θ)

)2]
= I(θ) is the fisher information matrix.

Remark: The V ar(θ̂) is same as MSE(θ̂) as the bias(θ̂) is 0.

Proof. We will prove this Theorem 6 in the next lecture.
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