MATH888: High-dimensional probability and statistics

Fall 2021

Lecture 4 — September 15, 2021

Sebastien Roch, UW-Madison

Scribe: Subhojyoti Mukherjee

1 Overview

In the last lecture we reviewed some important facts in probability theory and then considered a more general context for comparing estimators. In this lecture we will redefine a few notations and study the Bias-variance decomposition and Cramer-Rao bound.

2 Notations

We make slight adjustments to notations in this lecture. We simplify them and redefine as follows:

- 1. We have a family of distributions \mathcal{P} over a sample space \mathcal{X} . We will assume everything is measurable.
- 2. Parameter $\theta: \mathcal{P} \to \Theta$, where Θ is the parameter space.
- 3. We are provided with the data: n i.i.d \mathcal{X} -valued $X_1, X_2, \ldots, X_n \sim P \in \mathcal{P}$
- 4. We define the estimator: $\hat{\theta}^n: \mathcal{X}^n \to \Theta$

Remark 1. All events and random variables are over a Probability space $(\Omega, \mathcal{F}, \mathbb{P})$. \mathbb{P} is the underlying measure of the joint probability space. P is the distribution if one of the samples X_1, X_2, \ldots, X_n . The expectation and variance of Z is denoted by $\mathbb{E}[Z]$ and $\operatorname{Var}(Z)$ respectively. If need to specify the distribution of samples P, we use a sub-script. \mathbb{P}_P , \mathbb{E}_P , Var_P . The \mathbb{P}_p is defined on an event, the \mathbb{E}_P , Var_P are defined over some function of X_i 's.

Remark 2. We often drop the superscript of $\hat{\theta}^n$. That is we will write $\hat{\theta}$.

Definition 3. We define the following definitions which are taken from [Pan16]

- (a) The bias of $\hat{\theta}$ is $bias_P(th\hat{e}ta, \theta) = \mathbb{E}_P[\hat{\theta} \theta]$. For short we will write $bias(\hat{\theta})$. Bias is positive if you over-estimate and negative if you under-estimate. It is not a metric as such.
- (b) The mean squared error (MSE) of $\hat{\theta}$ is

$$MSE_P(\hat{\theta}, \theta) = \mathbb{E}_P(\|\hat{\theta} - \theta\|^2).$$

For short we will write $MSE_P(\hat{\theta})$.

3 Bias-Variance Decomposition [Pan16], (Lemma 3.4)

We introduce the notation $\hat{\theta} = (\hat{\theta}, \dots, \hat{\theta_p}) \in \mathbb{R}^p$ is a p-dimensional vector. Then we have

$$MSE(\hat{\theta}) = \|\operatorname{bias}(\hat{\theta})\|_{2}^{2} + \sum_{k=1}^{p} Var(\hat{\theta}).$$

Proof. The proof is for p = 1. We have that

$$\mathbb{E}(\hat{\theta}, \theta) = \mathbb{E}(\hat{\theta} - \mathbb{E}(\hat{\theta}) + \mathbb{E}(\hat{\theta}) - \theta)^{2}$$

$$= \underbrace{\mathbb{E}[(\mathbb{E}(\hat{\theta}) - \theta)^{2}]}_{\text{bias}(\hat{\theta})} + \underbrace{\mathbb{E}(\hat{\theta} - \mathbb{E}(\hat{\theta}))^{2}}_{\text{Var}(\hat{\theta}, \theta)} + 2\mathbb{E}[(\hat{\theta} - \mathbb{E}(\hat{\theta}))(\underbrace{\mathbb{E}(\hat{\theta}) - \theta)}_{\text{Term (a)}}]$$

where the term (a) is deterministic and $\mathbb{E}(\hat{\theta}) - \theta = 0$. Hence we get the result.

Definition 4. We say that $\hat{\theta}^{(n)}$, $n \geq 1$ is consistent if $\hat{\theta}^n \to \theta$ as $n \stackrel{P}{\to} \infty$, where $\stackrel{P}{\to}$ means convergence in probability.

Lemma 5. We can show that $\mathbb{P}[\|\hat{\theta} - \theta\|_2^2 > \epsilon] \leq \frac{\text{MSE}(\hat{\theta})}{\epsilon^2}$. This implies consistency if

$$MSE(\hat{\theta}^n) \to 0.$$

Proof. Let $Z = \|\hat{\theta} - \theta\|_2^2$. So Z is a random variable and positive. Using Markov's inequality we can show that

$$\mathbb{P}(\|\hat{\theta} - \theta\|_2^2 > \epsilon^2) \le \frac{\mathbb{E}(\|\hat{\theta} - \theta\|_2^2)}{\epsilon^2}.$$

Note that $MSE(\hat{\theta}) = ||\hat{\theta} - \theta||_2^2$. Hence the claim of the lemma follows.

Definition: We define an unbiased estimator if $\operatorname{bias}_{P}(\hat{\theta}, \theta) = 0, \forall \theta, P$.

4 Cramer-Rao Bound (Special case)

We now prove the Cramer-Rao bound for the special case when dimension p = 1. For the multidimensional general case see Thm 6.6 in [LC06].

First we define the following setting required for this proof:

- (a) \mathcal{X} is finite.
- (b) $\Theta \subseteq \mathbb{R}$ is open
- (c) $\mathcal{P} = \{P(\cdot; \theta) : \theta \in \Theta\}$ where $\mathbb{P}(X = x) = P(x; \theta)$
- (d) $P(x;\theta)$ is continuously differentiable for all x wr.t. θ

(e) $P(x; \theta) > 0$.

Theorem 6. Let $\hat{\theta}$ be an unbiased estimator of $g(\theta)$ where $g: \mathbb{R} \to \mathbb{R}$ is continuously differentiable. Then

$$Var(\hat{\theta}) \ge \frac{(g'(\theta))^2}{n\mathbb{E}\left[\left(\frac{\partial}{\partial \theta}\log P(X_1; \theta)\right)^2\right]}$$

where $\mathbb{E}\left[\left(\frac{\partial}{\partial \theta} \log P(X_1; \theta)\right)^2\right] = I(\theta)$ is the fisher information matrix.

Remark: The $Var(\hat{\theta})$ is same as $MSE(\hat{\theta})$ as the bias $(\hat{\theta})$ is 0.

Proof. We will prove this Theorem 6 in the next lecture.

References

[LC06] Erich L Lehmann and George Casella. *Theory of point estimation*. Springer Science & Business Media, 2006.

[Pan16] Victor M Panaretos. Statistics for mathematicians. Compact Textbook in Mathematics. Birkhäuser/Springer, 142:9–15, 2016.