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1 Overview

In the last lecture we reviewed some important facts in probability theory and then considered a
more general context for comparing estimators. In this lecture we will redefine a few notations and
study the Bias-variance decomposition and Cramer-Rao bound.

2 Notations

We make slight adjustments to notations in this lecture. We simplify them and redefine as follows:

1. We have a family of distributions P over a sample space X. We will assume everything is
measurable.

2. Parameter 6 : P — O, where © is the parameter space.
3. We are provided with the data: n i.i.d X-valued X1, Xo,...,X;, ~ P €P
4. We define the estimator: 6" : X" — ©

Remark 1. All events and random variables are over a Probability space (2, F,P). P is the underly-
ing measure of the joint probability space. P is the distribution if one of the samples X1, Xo, ..., X,.
The expectation and variance of Z is denoted by E[Z] and Var(Z) respectively. If need to specify
the distribution of samples P, we use a sub-script. Pp, Ep, Varp. The P, is defined on an event,
the Ep, Varp are defined over some function of X;’s.

Remark 2. We often drop the superscript of 0™. That is we will write 0.

Definition 3. We define the following definitions which are taken from [Panl16]

(a) The bias of 0 is biasp(theta,0) = Ep[0 — 0]. For short we will write bias(). Bias is positive
if you over-estimate and negative if you under-estimate. It is not a metric as such.

(b) The mean squared error (MSE) of 0 is
MSEp(8,0) = Ep(]|f — 0]%).

For short we will write MSEp(6).



3 Bias-Variance Decomposition [Panl6], (Lemma 3.4)

A~

We introduce the notation § = @,... ,ép) € R? is a p-dimensional vector. Then we have

MSE(f) = | bias(d HQ—&—ZVar

Proof. The proof is for p = 1. We have that

E(6,6) = E(é E(0) + E(9) — 0)>
E[(E(9) — 6)°] + E(0 — E(0))* +2E[(0 — E(9))(E()) — 0)]

—
bias() Var(6,0) Term (a)
where the term (a) is deterministic and E(§) — 6 = 0. Hence we get the result. O

Definition 4. We say that 60, n > 1 is consistent if " = 0 asn 5 oo, where B means
convergence in probability.

Lemma 5. We can show that P[||0 — 0||3 > €] < MSEE;@ This implies consistency if
MSE(4") — 0
Proof. Let Z = ||6 — 6]|3. So Z is a random variable and positive. Using Markov’s inequality we
can show that
p1d— 013 > ) < ZO 01D
Note that MSE(f) = ||0 — 0||2. Hence the claim of the lemma, follows. O

Definition: We define an unbiased estimator if biasP(é, 0) =0,v0, P.

4 Cramer-Rao Bound (Special case)

We now prove the Cramer-Rao bound for the special case when dimension p = 1. For the multi-
dimensional general case see Thm 6.6 in [LC06].

First we define the following setting required for this proof:

(a) X is finite.
(

)

b) © C R is open

(c) P={P(;0):0 € O} where P(X =) = P(x;0)
(d)

P(x;6) is continuously differentiable for all x wr.t. 0



(e) P(x;6) > 0.

Theorem 6. Let 6 be an unbiased estimator of g(0) where g : R — R is continuously differentiable.
Then

5 ('(0))
Var(0) >
nE | (£ 10g P(X1:0))’]

where B [(% log P(X1; 0))2} = I(0) is the fisher information matriz.
Remark: The Var(0) is same as MSE(f) as the bias(6) is 0.

Proof. We will prove this Theorem 6 in the next lecture. O
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