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1 Overview

In this and the previous lecture we discussed the stochastic block model. This lecture was given
from slides, available on the course website. The first half of the slides were review of last time,
and the rest was new material based on Sections 3.1 and 3.4 in [1]. These lecture notes cover the
new material, with notation changed to match last time.

2 Notation

Recall that we are concerned with detecting communities in the stochastic block model (SBM).
Here n, the number of vertices, is a positive even integer. The vertices are partitioned uniformly
at random into two communities of size n/2. Each pair of vertices in the same community has
an edge between them with probability qin ∈ [0, 1], and each pair in different communities has an
edge with probability qout ∈ [0, qin], all independently. Let Πn

2 = {x ∈ {±1}n : xᵀ1 = 0} be the
set of possible partitions (we think of i as being in the + community when xi = +1, and in the −
community otherwise). Let (X,A) be drawn from the SBM, so that X ∈ Πn

2 is uniformly random
and A is the (random) adjacency matrix of the resulting graph.

3 Spectral Clustering

Last time we discussed estimating the partition into communities, given the adjacency matrix A,
by an x ∈ Πn

2 which maximized xᵀAx. We suggested that the correct approach was to relax this
optimization problem. The relaxed optimization problem that we wish to consider is the following:

max
x∈Rn:‖x‖22=n

xᵀ1=0

xᵀAx.

Consider the matrix

M := A− qin + qout
2

11ᵀ + qinI

Let M∗ = E[M |X]. (Alternatively, you can assume that M is indexed so that all members of the
first community come before those of the second community, and just look at E[M ]). One can
check that M∗ij is (qin− qout)/2 if i and j are in the same community and −(qin− qout)/2 otherwise.
It follows that the leading eigenvalue of M∗ is

λ∗ =
(qin − qout)n

2
,
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with associated unit eigenvalue u∗ = (u∗i ) given by

u∗i =

{
n−1/2 Xi = +1

−n−1/2 Xi = −1

If we knew u∗, we would be done. So our strategy to estimate X is the following spectral clustering
algorithm:

1. Compute the leading eigenvector u = (ui) of M .

2. Estimate X via the vector X̂ = (sgn(ui))
n
i=1.

The intuition is that w.h.p. u∗ should be close to u. Indeed, next week we intend to sketch the
proof of the following theorem:

Theorem 1 ([1, Thm 3.8]). Suppose that qin & log(n)/n and
√
qin/n = o(qin − qout). With

probability exceeding 1−O(n−8), the spectral method achieves

max
s∈{±1}

1

n

n∑
i=1

1{Xi − sX̂i} = 1− o(1).

Note the following special cases:

Special Case 1: qin − qout �
√

log n/n if qin � log(n)/n

Special Case 2: qin − qout � 1/
√
n if qin � 1

The proof of the theorem will use the following theorem, which we will not prove:

Theorem 2 ([1, Thm 3.4]). Consider a symmetric random matrix Y = [Yij ] ∈ Rn×n, whose entries
are independently generated, mean zero, and uniformly bounded by B ∈ (0,∞). Define

v = max
i

∑
j

E[Y 2
ij ].

There there exists some universal constant c > 0 such that for any t ≥ 0,

P
{
‖Y ‖ ≥ 4

√
ν + t

}
≤ n exp

(
− t2

cB2

)
.

In addition to this theorem, the proof will also use a version of the Davis–Kahan theorem. It is
also true, though the Davis–Kahan theorem will not suffice to prove, that the spectral method will
give us exact recovery:

Theorem 3 ([1, Thm 4.6]). Fix ε > 0. Suppose that qin = α log(n)/n and qout = β log(n)/n for
some sufficiently large constants α > β > 0. In addition, assume that

(
√
qin −

√
qout)

2 ≥ 2(1− ε) log n

n
.

With probability 1− o(1), the spectral method yields X = sX̂ for some s ∈ {±1}.
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